'Pytorch: 1D target tensor expected, multi-target not supported

I want to train a 1D CNN on time series. I get the following error message 1D target tensor expected, multi-target not supported

Here is the code with simulated data corresponding to the structures of my data as well as the error message

import torch
from torch.utils.data import DataLoader
import torch.utils.data as data
import torch.nn as nn

import numpy as np
import random
from tqdm.notebook import tqdm

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)


train_dataset = []
n_item = 20
for i in range(0,n_item):
    train_data = np.random.uniform(-10, 10, 500)
    train_dataset.append(train_data)
train_dataset = np.asarray(train_dataset)
train_dataset.shape
ecg_train = torch.from_numpy(train_dataset).float()
labels_train = np.random.randint(2, size=n_item)
labels_train = torch.from_numpy(labels_train).long()


val_dataset = []
n_item = 10
for i in range(0,n_item):
    val_data = np.random.uniform(-10, 10, 500)
    val_dataset.append(val_data)
val_dataset = np.asarray(val_dataset)
val_dataset.shape
ecg_validation = torch.from_numpy(val_dataset).float()
labels_validation = np.random.randint(2, size=n_item)
labels_validation = torch.from_numpy(labels_validation).long()

class ECGNet(data.Dataset):
    """ImageNet Limited dataset."""
    
    def __init__(self, ecgs, labls, transform=None):
            self.ecg = ecgs
            self.target = labls
            self.transform = transform

    def __getitem__(self, idx):
        ecgVec = self.ecg[idx] #.reshape(10, -1)
        labelID = self.target[idx].reshape(1)

        return ecgVec,labelID

    def __len__(self):
        return len(self.ecg)


train_data = ECGNet(ecg_train, 
                             labels_train, 
                   )
print("size of Training dataset: {}".format(len(train_data)))

validation_data = ECGNet(ecg_validation, 
                             labels_validation, 
                   )
print("size of Training dataset: {}".format(len(validation_data)))


batch_size = 1
train_dataloader = DataLoader(dataset = train_data,
                              batch_size=batch_size, 
                              shuffle = True, 
                              num_workers = 0)

val_dataloader = DataLoader(dataset = validation_data,
                              batch_size=batch_size, 
                              shuffle = True, 
                              num_workers = 0)


def train_epoch(model, train_dataloader, optimizer, loss_fn):
    losses = []
    correct_predictions = 0
    # Iterate mini batches over training dataset
    for images, labels in tqdm(train_dataloader):
        images = images.to(device)
    #labels = labels.squeeze_()
        labels = labels.to(device)

        #labels = labels.to(device=device, dtype=torch.int64)
        # Run predictions
        output = model(images)
        # Set gradients to zero
        optimizer.zero_grad()
        # Compute loss
        loss = loss_fn(output, labels)
        # Backpropagate (compute gradients)
        loss.backward()
        # Make an optimization step (update parameters)
        optimizer.step()
        # Log metrics
        losses.append(loss.item())
        predicted_labels = output.argmax(dim=1)
        correct_predictions += (predicted_labels == labels).sum().item()
    accuracy = 100.0 * correct_predictions / len(train_dataloader.dataset)
    # Return loss values for each iteration and accuracy
    mean_loss = np.array(losses).mean()
    return mean_loss, accuracy

def evaluate(model, dataloader, loss_fn):
    losses = []
    correct_predictions = 0
    with torch.no_grad():
        for images, labels in dataloader:
            images = images.to(device)
            #labels = labels.squeeze_()
            labels = labels.to(device=device, dtype=torch.int64)
            # Run predictions
            output = model(images)
            # Compute loss
            loss = loss_fn(output, labels)
            # Save metrics
            predicted_labels = output.argmax(dim=1)
            correct_predictions += (predicted_labels == labels).sum().item()
            losses.append(loss.item())
    mean_loss = np.array(losses).mean()
    accuracy = 100.0 * correct_predictions / len(dataloader.dataset)
    # Return mean loss and accuracy
    return mean_loss, accuracy

def train(model, train_dataloader, val_dataloader, optimizer, n_epochs, loss_function):
    # We will monitor loss functions as the training progresses
    train_losses = []
    val_losses = []
    train_accuracies = []
    val_accuracies = []

    for epoch in range(n_epochs):
        model.train()
        train_loss, train_accuracy = train_epoch(model, train_dataloader, optimizer, loss_fn)
        model.eval()
        val_loss, val_accuracy = evaluate(model, val_dataloader, loss_fn)
        train_losses.append(train_loss)
        val_losses.append(val_loss)
        train_accuracies.append(train_accuracy)
        val_accuracies.append(val_accuracy)
        print('Epoch {}/{}: train_loss: {:.4f},        train_accuracy: {:.4f}, val_loss: {:.4f},        val_accuracy: {:.4f}'.format(epoch+1, n_epochs,
                                     train_losses[-1],
                                     train_accuracies[-1],
                                     val_losses[-1],
                                     val_accuracies[-1]))
    return train_losses, val_losses, train_accuracies, val_accuracies


class Simple1DCNN(torch.nn.Module):
    def __init__(self):
        super(Simple1DCNN, self).__init__()
        self.layer1 = torch.nn.Conv1d(in_channels=50, 
                                      out_channels=20, 
                                      kernel_size=5, 
                                      stride=2)
        self.act1 = torch.nn.ReLU()
        self.layer2 = torch.nn.Conv1d(in_channels=20, 
                                      out_channels=10, 
                                      kernel_size=1)
        
        self.fc1 = nn.Linear(10* 3, 2)
    def forward(self, x):
        print(x.shape)
        x = x.view(1, 50,-1)
        print(x.shape)
        x = self.layer1(x)
        print(x.shape)
        x = self.act1(x)
        print(x.shape)
        x = self.layer2(x)
        print(x.shape)
        x = x.view(1,-1)
        print(x.shape)
        x = self.fc1(x)
        print(x.shape)
        print(x)
        
        return x



model_a = Simple1DCNN()
model_a = model_a.to(device)

criterion = nn.CrossEntropyLoss()

loss_fn = torch.nn.CrossEntropyLoss()
n_epochs_a = 50
learning_rate_a = 0.01
alpha_a = 1e-5
momentum_a = 0.9
optimizer = torch.optim.SGD(model_a.parameters(), 
                            momentum = momentum_a,
                            nesterov = True,
                            weight_decay = alpha_a,
                            lr=learning_rate_a)
train_losses_a, val_losses_a, train_acc_a, val_acc_a = train(model_a,
                                                             train_dataloader,
                                                             val_dataloader,
                                                             optimizer,
                                                             n_epochs_a,
                                                             loss_fn
                                                            )



Error message:

cpu
size of Training dataset: 20
size of Training dataset: 10
  0%|          | 0/20 [00:00<?, ?it/s]
torch.Size([1, 500])
torch.Size([1, 50, 10])
torch.Size([1, 20, 3])
torch.Size([1, 20, 3])
torch.Size([1, 10, 3])
torch.Size([1, 30])
torch.Size([1, 2])
tensor([[ 0.5785, -1.0169]], grad_fn=<AddmmBackward>)
Traceback (most recent call last):
  File "SO_question.py", line 219, in <module>
    train_losses_a, val_losses_a, train_acc_a, val_acc_a = train(model_a,
  File "SO_question.py", line 137, in train
    train_loss, train_accuracy = train_epoch(model, train_dataloader, optimizer, loss_fn)
  File "SO_question.py", line 93, in train_epoch
    loss = loss_fn(output, labels)
  File "/Users/mymac/Documents/programming/python/mainenv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/Users/mymac/Documents/programming/python/mainenv/lib/python3.8/site-packages/torch/nn/modules/loss.py", line 961, in forward
    return F.cross_entropy(input, target, weight=self.weight,
  File "/Users/mymac/Documents/programming/python/mainenv/lib/python3.8/site-packages/torch/nn/functional.py", line 2468, in cross_entropy
    return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
  File "/Users/mymac/Documents/programming/python/mainenv/lib/python3.8/site-packages/torch/nn/functional.py", line 2264, in nll_loss
    ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
RuntimeError: 1D target tensor expected, multi-target not supported

What am I doing wrong?



Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source