'Python: Concatenate (or clone) a numpy array N times

I want to create an MxN numpy array by cloning a Mx1 ndarray N times. Is there an efficient pythonic way to do that instead of looping?

Btw the following way doesn't work for me (X is my Mx1 array) :

   numpy.concatenate((X, numpy.tile(X,N)))

since it created a [M*N,1] array instead of [M,N]



Solution 1:[1]

You could use vstack:

numpy.vstack([X]*N)

e.g.

>>> import numpy as np
>>> X = np.array([1,2,3,4])
>>> N = 7
>>> np.vstack([X]*N)
array([[1, 2, 3, 4],
       [1, 2, 3, 4],
       [1, 2, 3, 4],
       [1, 2, 3, 4],
       [1, 2, 3, 4],
       [1, 2, 3, 4],
       [1, 2, 3, 4],
       [1, 2, 3, 4],
       [1, 2, 3, 4]])

Solution 2:[2]

Have you tried this:

n = 5
X = numpy.array([1,2,3,4])
Y = numpy.array([X for _ in xrange(n)])
print Y
Y[0][1] = 10
print Y

prints:

[[1 2 3 4]
 [1 2 3 4]
 [1 2 3 4]
 [1 2 3 4]
 [1 2 3 4]]

[[ 1 10  3  4]
 [ 1  2  3  4]
 [ 1  2  3  4]
 [ 1  2  3  4]
 [ 1  2  3  4]]

Solution 3:[3]

An alternative to np.vstack is np.array used this way (also mentioned by @bluenote10 in a comment):

x = np.arange([-3,4]) # array([-3, -2, -1,  0,  1,  2,  3])
N = 3 # number of time you want the array repeated
X0 = np.array([x] * N)

gives:

array([[-3, -2, -1,  0,  1,  2,  3],
       [-3, -2, -1,  0,  1,  2,  3],
       [-3, -2, -1,  0,  1,  2,  3]])

You can also use meshgrid this way (granted it's longer to write, and kind of pulling hairs but you get yet another possibility and you may learn something new along the way):

X1,_ = np.meshgrid(a,np.empty([N]))

>>> X1 shows:

array([[-3, -2, -1,  0,  1,  2,  3],
       [-3, -2, -1,  0,  1,  2,  3],
       [-3, -2, -1,  0,  1,  2,  3]])

Checking that all these are equivalent:

  • meshgrid and np.array approach

    X0 == X1

result:

array([[ True,  True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True,  True]])
  • np.array and np.vstack approach

    X0 == np.vstack([x] * 3)

result:

array([[ True,  True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True,  True]])
  • np.array and np.tile approach

    X0 == np.tile(x,(N,1))

result:

array([[ True,  True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True,  True]])

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 xxx
Solution 2 Samy Arous
Solution 3 calocedrus