'Error creating heatmap from data frame with seaborn
I am trying to create a heat map from a data frame. Each column I am using is made up of numpy.float64.
def create_visual(x, y , z,aggfunc = 'mean'):
bip_2 = bip[[x,y,z]]
bip_2 = bip_2.pivot_table(index=x, columns=y, values=z, aggfunc=aggfunc)
ax = sns.heatmap(bip_2)
Each column is a list of numpy.float64. The error I am recieving is:
TypeError: float() argument must be a string or a number, not 'NAType'
The data frame is:
| hc_x1 | hc_y1 | delta_run_exp | |
|---|---|---|---|
| 3171 | 152.0 | 155.0 | -0.082 |
| 3340 | 145.0 | 148.0 | -0.134 |
| 1632 | 155.0 | 174.0 | -0.309 |
| 1776 | 20.0 | 106.0 | 0.422 |
| 1892 | 168.0 | 61.0 | -0.207 |
| ... | ... | ... | ... |
| 3782 | 136.0 | 150.0 | -0.349 |
| 1759 | 155.0 | 172.0 | -0.390 |
| 2681 | 99.0 | 176.0 | -0.566 |
| 3241 | 65.0 | 122.0 | 0.700 |
| 3408 | 87.0 | 110.0 | 0.327 |
Thank you.
Solution 1:[1]
NAType in Pandas typically represents missing data. Have you checked to see if there is any missing data in your DataFrame?
You can do this for the whole DataFrame with df.isnull().values.any().
For example:
frame = pd.DataFrame({'col1' : [1, 2, 3, None], 'col2' : ['a', None, 'b', 'c']})
check = frame.isnull().values.any()
print(check)
If you find that you have NaN values, you can be more specific in that query and find the columns and rows. Pandas also lets you replace NaN values with df.fillna() or drop them with df.dropna().
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | Gray-lab |
