'What is the difference between enc_out_dim and latent_dim in variational autoencoders
I am reading this article and have question concerning dimensions of latent space and enc_out_dim
class VAE(pl.LightningModule):
def __init__(self, enc_out_dim=512, latent_dim=256, input_height=32):
super().__init__()
self.save_hyperparameters()
# encoder, decoder
self.encoder = resnet18_encoder(False, False)
self.decoder = resnet18_decoder(
latent_dim=latent_dim,
input_height=input_height,
first_conv=False,
maxpool1=False
)
# distribution parameters
self.fc_mu = nn.Linear(enc_out_dim, latent_dim)
self.fc_var = nn.Linear(enc_out_dim, latent_dim)
# for the gaussian likelihood
self.log_scale = nn.Parameter(torch.Tensor([0.0]))
Can you explain here what is difference between enc_out_dim and latent_dim? I want to implement variational autoencoder with tree_lstm as encoder and I am not sure how give values enc_out_dim and latent_dim.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
