'What is the best way to generate all possible three letter strings?
I am generating all possible three letters keywords e.g. aaa, aab, aac.... zzy, zzz below is my code:
alphabets = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
keywords = []
for alpha1 in alphabets:
for alpha2 in alphabets:
for alpha3 in alphabets:
keywords.append(alpha1+alpha2+alpha3)
Can this functionality be achieved in a more sleek and efficient way?
Solution 1:[1]
keywords = itertools.product(alphabets, repeat = 3)
See the documentation for itertools.product. If you need a list of strings, just use
keywords = [''.join(i) for i in itertools.product(alphabets, repeat = 3)]
alphabets also doesn't need to be a list, it can just be a string, for example:
from itertools import product
from string import ascii_lowercase
keywords = [''.join(i) for i in product(ascii_lowercase, repeat = 3)]
will work if you just want the lowercase ascii letters.
Solution 2:[2]
You could also use map instead of the list comprehension (this is one of the cases where map is still faster than the LC)
>>> from itertools import product
>>> from string import ascii_lowercase
>>> keywords = map(''.join, product(ascii_lowercase, repeat=3))
This variation of the list comprehension is also faster than using ''.join
>>> keywords = [a+b+c for a,b,c in product(ascii_lowercase, repeat=3)]
Solution 3:[3]
from itertools import combinations_with_replacement
alphabets = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
for (a,b,c) in combinations_with_replacement(alphabets, 3):
print a+b+c
Solution 4:[4]
You can also do this without any external modules by doing simple calculation.
The PermutationIterator is what you are searching for.
def permutation_atindex(_int, _set, length):
"""
Return the permutation at index '_int' for itemgetter '_set'
with length 'length'.
"""
items = []
strLength = len(_set)
index = _int % strLength
items.append(_set[index])
for n in xrange(1,length, 1):
_int //= strLength
index = _int % strLength
items.append(_set[index])
return items
class PermutationIterator:
"""
A class that can iterate over possible permuations
of the given 'iterable' and 'length' argument.
"""
def __init__(self, iterable, length):
self.length = length
self.current = 0
self.max = len(iterable) ** length
self.iterable = iterable
def __iter__(self):
return self
def __next__(self):
if self.current >= self.max:
raise StopIteration
try:
return permutation_atindex(self.current, self.iterable, self.length)
finally:
self.current += 1
Give it an iterable object and an integer as the output-length.
from string import ascii_lowercase
for e in PermutationIterator(ascii_lowercase, 3):
print "".join(e)
This will start from 'aaa' and end with 'zzz'.
Solution 5:[5]
chars = range(ord('a'), ord('z')+1);
print [chr(a) + chr(b) +chr(c) for a in chars for b in chars for c in chars]
Solution 6:[6]
We could solve this without the itertools by utilizing two function definitions:
def combos(alphas, k):
l = len(alphas)
kRecur(alphas, "", l, k)
def KRecur(alphas, prfx, l, k):
if k==0:
print(prfx)
else:
for i in range(l):
newPrfx = prfx + alphas[i]
KRecur(alphas, newPrfx, l, k-1)
It's done using two functions to avoid resetting the length of the alphas, and the second function self-iterates itself until it reaches a k of 0 to return the k-mer for that i loop.
Adopted from a solution by Abhinav Ramana on Geeks4Geeks
Solution 7:[7]
Well, i came up with that solution while thinking about how to cover that topic:
import random
s = "aei"
b = []
lenght=len(s)
for _ in range(10):
for _ in range(length):
password = ("".join(random.sample(s,length)))
if password not in b:
b.append("".join(password))
print(b)
print(len(b))
Please let me describe what is going on inside:
- Importing Random,
- creating a string with letters that we want to use
- creating an empty list that we will use to put our combinations in
- and now we are using range (I put 10 but for 3 digits it can be less)
- next using random.sample with a list and list length we are creating letter combinations and joining it.
- in next steps we are checking if in our b list we have that combination - if so, it is not added to the b list. If current combination is not on the list, we are adding it to it. (we are comparing final joined combination).
- the last step is to print list b with all combinations and print number of possible combinations. Maybe it is not clear and most efficient code but i think it works...
Solution 8:[8]
print([a+b+c for a in alphabets for b in alphabets for c in alphabets if a !=b and b!=c and c!= a])
This removes the repetition of characters in one string
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | agf |
| Solution 2 | John La Rooy |
| Solution 3 | agf |
| Solution 4 | agf |
| Solution 5 | |
| Solution 6 | |
| Solution 7 | |
| Solution 8 | a_r |
