'Weird prediction after MinMax Scaler

I am trying to make forecasting with LSTM but when I do MinMax Normalization my prediction is being terrible. When I check autocorrelation, data looks stationary before and after MinMax normalization, but still result is not acceptable. (i tried almost every activation functions and many lstm layers too)

Autocorellation screenshot

Prediction

My LSTM archtiecture :

EPOCHS = 1000

steps = int( np.ceil(x_train_multi.shape[0] / batch_size) )
val_steps=int( np.ceil(x_val_multi.shape[0] / batch_size) )


multi_step_model = tf.keras.models.Sequential()
multi_step_model.add(LSTM(128,activation="relu",return_sequences=False,input_shape=x_train_multi.shape[-2:]))
multi_step_model.add(Dropout(0.4))
multi_step_model.add(tf.keras.layers.Dense(future_target)) # for 72 outputs
multi_step_model.compile(optimizer=tf.keras.optimizers.Adam(), loss='mae')

multi_step_model.summary()
print(train_data_multi)

multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,
                                          steps_per_epoch=steps,
                                          validation_data=val_data_multi,
                                          validation_steps=val_steps)


Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source