'Sorting arrays in NumPy by column
How can I sort an array in NumPy by the nth column?
For example,
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
I'd like to sort rows by the second column, such that I get back:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
Solution 1:[1]
To sort by the second column of a:
a[a[:, 1].argsort()]
Solution 2:[2]
You can sort on multiple columns as per Steve Tjoa's method by using a stable sort like mergesort and sorting the indices from the least significant to the most significant columns:
a = a[a[:,2].argsort()] # First sort doesn't need to be stable.
a = a[a[:,1].argsort(kind='mergesort')]
a = a[a[:,0].argsort(kind='mergesort')]
This sorts by column 0, then 1, then 2.
Solution 3:[3]
In case someone wants to make use of sorting at a critical part of their programs here's a performance comparison for the different proposals:
import numpy as np
table = np.random.rand(5000, 10)
%timeit table.view('f8,f8,f8,f8,f8,f8,f8,f8,f8,f8').sort(order=['f9'], axis=0)
1000 loops, best of 3: 1.88 ms per loop
%timeit table[table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop
import pandas as pd
df = pd.DataFrame(table)
%timeit df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop
So, it looks like indexing with argsort is the quickest method so far...
Solution 4:[4]
From the Python documentation wiki, I think you can do:
a = ([[1, 2, 3], [4, 5, 6], [0, 0, 1]]);
a = sorted(a, key=lambda a_entry: a_entry[1])
print a
The output is:
[[[0, 0, 1], [1, 2, 3], [4, 5, 6]]]
Solution 5:[5]
From the NumPy mailing list, here's another solution:
>>> a
array([[1, 2],
[0, 0],
[1, 0],
[0, 2],
[2, 1],
[1, 0],
[1, 0],
[0, 0],
[1, 0],
[2, 2]])
>>> a[np.lexsort(np.fliplr(a).T)]
array([[0, 0],
[0, 0],
[0, 2],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 2],
[2, 1],
[2, 2]])
Solution 6:[6]
I had a similar problem.
My Problem:
I want to calculate an SVD and need to sort my eigenvalues in descending order. But I want to keep the mapping between eigenvalues and eigenvectors. My eigenvalues were in the first row and the corresponding eigenvector below it in the same column.
So I want to sort a two-dimensional array column-wise by the first row in descending order.
My Solution
a = a[::, a[0,].argsort()[::-1]]
So how does this work?
a[0,] is just the first row I want to sort by.
Now I use argsort to get the order of indices.
I use [::-1] because I need descending order.
Lastly I use a[::, ...] to get a view with the columns in the right order.
Solution 7:[7]
import numpy as np
a=np.array([[21,20,19,18,17],[16,15,14,13,12],[11,10,9,8,7],[6,5,4,3,2]])
y=np.argsort(a[:,2],kind='mergesort')# a[:,2]=[19,14,9,4]
a=a[y]
print(a)
Desired output is [[6,5,4,3,2],[11,10,9,8,7],[16,15,14,13,12],[21,20,19,18,17]]
note that argsort(numArray) returns the indices of an numArray as it was supposed to be arranged in a sorted manner.
example
x=np.array([8,1,5])
z=np.argsort(x) #[1,3,0] are the **indices of the predicted sorted array**
print(x[z]) #boolean indexing which sorts the array on basis of indices saved in z
answer would be [1,5,8]
Solution 8:[8]
A little more complicated lexsort example - descending on the 1st column, secondarily ascending on the 2nd. The tricks with lexsort are that it sorts on rows (hence the .T), and gives priority to the last.
In [120]: b=np.array([[1,2,1],[3,1,2],[1,1,3],[2,3,4],[3,2,5],[2,1,6]])
In [121]: b
Out[121]:
array([[1, 2, 1],
[3, 1, 2],
[1, 1, 3],
[2, 3, 4],
[3, 2, 5],
[2, 1, 6]])
In [122]: b[np.lexsort(([1,-1]*b[:,[1,0]]).T)]
Out[122]:
array([[3, 1, 2],
[3, 2, 5],
[2, 1, 6],
[2, 3, 4],
[1, 1, 3],
[1, 2, 1]])
Solution 9:[9]
Here is another solution considering all columns (more compact way of J.J's answer);
ar=np.array([[0, 0, 0, 1],
[1, 0, 1, 0],
[0, 1, 0, 0],
[1, 0, 0, 1],
[0, 0, 1, 0],
[1, 1, 0, 0]])
Sort with lexsort,
ar[np.lexsort(([ar[:, i] for i in range(ar.shape[1]-1, -1, -1)]))]
Output:
array([[0, 0, 0, 1],
[0, 0, 1, 0],
[0, 1, 0, 0],
[1, 0, 0, 1],
[1, 0, 1, 0],
[1, 1, 0, 0]])
Solution 10:[10]
It is an old question but if you need to generalize this to a higher than 2 dimension arrays, here is the solution than can be easily generalized:
np.einsum('ij->ij', a[a[:,1].argsort(),:])
This is an overkill for two dimensions and a[a[:,1].argsort()] would be enough per @steve's answer, however that answer cannot be generalized to higher dimensions. You can find an example of 3D array in this question.
Output:
[[7 0 5]
[9 2 3]
[4 5 6]]
Solution 11:[11]
#for sorting along column 1
indexofsort=np.argsort(dataset[:,0],axis=-1,kind='stable')
dataset = dataset[indexofsort,:]
Solution 12:[12]
def sort_np_array(x, column=None, flip=False):
x = x[np.argsort(x[:, column])]
if flip:
x = np.flip(x, axis=0)
return x
Array in the original question:
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
The result of the sort_np_array function as expected by the author of the question:
sort_np_array(a, column=1, flip=False)
[2]: array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
Solution 13:[13]
Thanks to this post: https://stackoverflow.com/a/5204280/13890678
I found a more "generic" answer using structured array. I think one advantage of this method is that the code is easier to read.
import numpy as np
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
struct_a = np.core.records.fromarrays(
a.transpose(), names="col1, col2, col3", formats="i8, i8, i8"
)
struct_a.sort(order="col2")
print(struct_a)
[(7, 0, 5) (9, 2, 3) (4, 5, 6)]
Solution 14:[14]
Pandas Approach Just For Completeness:
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
a = pd.DataFrame(a)
a.sort_values(1, ascending=True).to_numpy()
array([[7, 0, 5], # '1' means sort by second column
[9, 2, 3],
[4, 5, 6]])
prl900 Did the Benchmark, comparing with the accepted answer:
%timeit pandas_df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop
%timeit numpy_table[numpy_table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop
Solution 15:[15]
Simply using sort, use column number based on which you want to sort.
a = np.array([1,1], [1,-1], [-1,1], [-1,-1]])
print (a)
a = a.tolist()
a = np.array(sorted(a, key=lambda a_entry: a_entry[0]))
print (a)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
