'save as dataframe python
I am really new in python, so I am doing a consultd and I want that the results be save like dataframe instead of be just print in the terminal. Here is my code:
service = Service("https://www.mousemine.org/mousemine/service")
query = service.new_query("Gene")
query.add_view(
"primaryIdentifier", "symbol", "organism.name",
"homologues.homologue.primaryIdentifier", "homologues.homologue.symbol",
"homologues.homologue.organism.name", "homologues.type",
"homologues.dataSets.name"
)
query.add_constraint("homologues.type", "NONE OF", ["horizontal gene transfer", "least diverged horizontal gene transfer"], code = "B")
query.add_constraint("Gene", "LOOKUP", "ENSMUSG00000026981,ENSMUSG00000068039,ENSMUSG00000035007,ENSMUSG00000022972,", "M. musculus", code = "A")
query.add_constraint("homologues.homologue.organism.name", "=", "Homo sapiens", code = "C")
query.add_constraint("homologues.dataSets.name", "=", "Mouse/Human Orthologies from MGI", code = "D")
for row in query.rows():
print(row["primaryIdentifier"], row["symbol"], row["organism.name"], \
row["homologues.homologue.primaryIdentifier"],
row["homologues.homologue.symbol"], \
row["homologues.homologue.organism.name"], row["homologues.type"], \
row["homologues.dataSets.name"])
And this is the result that I get it
MGI:1915251 Cfap298 Mus musculus 56683 CFAP298 Homo sapiens orthologue Mouse/Human Orthologies from MGI MGI:2144506 Rundc1 Mus musculus 146923 RUNDC1 Homo sapiens orthologue Mouse/Human Orthologies from MGI MGI:96547 Il1rn Mus musculus 3557 IL1RN Homo sapiens orthologue Mouse/Human Orthologies from MGI MGI:98535 Tcp1 Mus musculus 6950 TCP1 Homo sapiens orthologue Mouse/Human Orthologies from MGI
And it is perfectly ok, but I need it in a dataframe. And if I can the consult using a table with all the ID and not have to writing one by one (because there are 14000) that will be amazing.
Solution 1:[1]
Using a loop:
df = pd.DataFrame({})
for row in query.rows():
data = {'primaryIdentifier': row["primaryIdentifier"],
'symbol': row["symbol"],
'organism.name': row["organism.name"],
'homologues.homologue.primaryIdentifier': row["homologues.homologue.primaryIdentifier"],
'homologues.homologue.symbol': row["homologues.homologue.symbol"],
'homologues.homologue.organism.name': row["homologues.homologue.organism.name"],
'homologues.type': row["homologues.type"],
'homologues.dataSets.name': row["homologues.dataSets.name"]}
df = df.append(pd.DataFrame(data), ignore_index = True)
Note that you must do an import pandas as pd and make sure that the data are str.
Solution 2:[2]
Pandas would help you.https://pandas.pydata.org. Feel free to ask questions if you stuck with something.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | Mario |
| Solution 2 | Krzysztof Szewczyk |
