'openpyxl ImportError in Airflow docker when using pd.read_excel()

When using pandas pd.read_excel() in an airflow task inside a container I get the openpyxl error below. I tried installing openpyxl using poetry and even using pip in the dockerfile but no success.

  File "/home/airflow/.local/lib/python3.8/site-packages/pandas/io/excel/_openpyxl.py", line 521, in __init__
    import_optional_dependency("openpyxl")
  File "/home/airflow/.local/lib/python3.8/site-packages/pandas/compat/_optional.py", line 118, in import_optional_dependency
    raise ImportError(msg) from None
ImportError: Missing optional dependency 'openpyxl'.  Use pip or conda to install openpyxl.

Here the versions in poetry toml

[tool.poetry.dependencies]
python = ">=3.8, <3.11"
pandas = "^1.3.3"
apache-airflow = "2.2.4"
openpyxl = "^3.0.9"

Similar and recent issue is reported here: https://dockerquestions.com/2022/03/02/docker-compose-airflow-no-error-during-build-missing-python-package-in-worker-container/ Any suggestion?

docker-compose.yaml

(don't forget to create .env, see comment down)

version: '3'
x-airflow-common:
  &airflow-common
  build:
    dockerfile: ./docker/airflow.dockerfile
    context: .
  environment:
    &airflow-common-env
    AIRFLOW__CORE__EXECUTOR: CeleryExecutor
    AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
    AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
    AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
    AIRFLOW__CORE__FERNET_KEY: ''
    AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
    AIRFLOW__CORE__LOAD_EXAMPLES: 'true'
    AIRFLOW__API__AUTH_BACKEND: 'airflow.api.auth.backend.basic_auth'
    _PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
  volumes:
    - ./airflow/dags:/opt/airflow/dags  # laptop_folder:container_folder sync
    - ./airflow/logs:/opt/airflow/logs
    - ./airflow/plugins:/opt/airflow/plugins
    - ./airflow/scheduler:/opt/airflow/scheduler
  user: "${AIRFLOW_UID:-50000}:${AIRFLOW_GID:-50000}" # echo -e "AIRFLOW_UID=$(id -u)\nAIRFLOW_GID=0" > .env
  depends_on:
    &airflow-common-depends-on
    redis:
      condition: service_healthy
    postgres:
      condition: service_healthy

services:
  postgres:
    image: postgres:13
    environment:
      POSTGRES_USER: airflow
      POSTGRES_PASSWORD: airflow
      POSTGRES_DB: airflow
    volumes:
      - postgres-db-volume:/var/lib/postgresql/data
    healthcheck:
      test: ["CMD", "pg_isready", "-U", "airflow"]
      interval: 5s
      retries: 5
    restart: always

  redis:
    image: redis:latest
    expose:
      - 6379
    healthcheck:
      test: ["CMD", "redis-cli", "ping"]
      interval: 5s
      timeout: 30s
      retries: 50
    restart: always

  airflow-webserver:
    <<: *airflow-common
    command: webserver
    ports:
      - 8080:8080
    healthcheck:
      test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
      interval: 10s
      timeout: 10s
      retries: 5
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

  airflow-scheduler:
    <<: *airflow-common
    command: scheduler
    healthcheck:
      test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"']
      interval: 10s
      timeout: 10s
      retries: 5
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

  airflow-worker:
    <<: *airflow-common
    command: celery worker
    healthcheck:
      test:
        - "CMD-SHELL"
        - 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
      interval: 10s
      timeout: 10s
      retries: 5
    environment:
      <<: *airflow-common-env
      # Required to handle warm shutdown of the celery workers properly
      # See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
      DUMB_INIT_SETSID: "0"
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

  airflow-triggerer:
    <<: *airflow-common
    command: triggerer
    healthcheck:
      test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
      interval: 10s
      timeout: 10s
      retries: 5
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

  airflow-init:
    <<: *airflow-common
    entrypoint: /bin/bash
    # yamllint disable rule:line-length
    command:
      - -c
      - |
        function ver() {
          printf "%04d%04d%04d%04d" $${1//./ }
        }
        airflow_version=$$(gosu airflow airflow version)
        airflow_version_comparable=$$(ver $${airflow_version})
        min_airflow_version=2.2.0
        min_airflow_version_comparable=$$(ver $${min_airflow_version})
        if (( airflow_version_comparable < min_airflow_version_comparable )); then
          echo
          echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
          echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
          echo
          exit 1
        fi
        if [[ -z "${AIRFLOW_UID}" ]]; then
          echo
          echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
          echo "If you are on Linux, you SHOULD follow the instructions below to set "
          echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
          echo "For other operating systems you can get rid of the warning with manually created .env file:"
          echo "    See: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#setting-the-right-airflow-user"
          echo
        fi
        one_meg=1048576
        mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
        cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
        disk_available=$$(df / | tail -1 | awk '{print $$4}')
        warning_resources="false"
        if (( mem_available < 4000 )) ; then
          echo
          echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
          echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
          echo
          warning_resources="true"
        fi
        if (( cpus_available < 2 )); then
          echo
          echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
          echo "At least 2 CPUs recommended. You have $${cpus_available}"
          echo
          warning_resources="true"
        fi
        if (( disk_available < one_meg * 10 )); then
          echo
          echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
          echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
          echo
          warning_resources="true"
        fi
        if [[ $${warning_resources} == "true" ]]; then
          echo
          echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
          echo "Please follow the instructions to increase amount of resources available:"
          echo "   https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#before-you-begin"
          echo
        fi
        mkdir -p /sources/logs /sources/dags /sources/plugins
        chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
        exec /entrypoint airflow version
    # yamllint enable rule:line-length
    environment:
      <<: *airflow-common-env
      _AIRFLOW_DB_UPGRADE: 'true'
      _AIRFLOW_WWW_USER_CREATE: 'true'
      _AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
      _AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
    user: "0:0"
    volumes:
      - ./airflow/:/sources

  airflow-cli:
    <<: *airflow-common
    profiles:
      - debug
    environment:
      <<: *airflow-common-env
      CONNECTION_CHECK_MAX_COUNT: "0"
    # Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
    command:
      - bash
      - -c
      - airflow

  flower:
    <<: *airflow-common
    command: celery flower
    ports:
      - 5555:5555
    healthcheck:
      test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
      interval: 10s
      timeout: 10s
      retries: 5
    restart: always
    depends_on:
      <<: *airflow-common-depends-on
      airflow-init:
        condition: service_completed_successfully

volumes:
  postgres-db-volume:

a docker folder with an airflow.dockerfile

FROM apache/airflow:2.2.5-python3.8

# use root for settings
USER root

ARG YOUR_ENV="virtualenv"

ENV YOUR_ENV=${YOUR_ENV} \
    PYTHONPATH="/opt/" \
    # PYTHONPATH="/opt/" -> python path to airflow-common volumes
    PYTHONFAULTHANDLER=1 \
    PYTHONUNBUFFERED=1 \
    PYTHONHASHSEED=random \
    PIP_NO_CACHE_DIR=off \
    PIP_DISABLE_PIP_VERSION_CHECK=on \
    PIP_DEFAULT_TIMEOUT=100 \
    LC_ALL=C.UTF-8 \
    LANG=C.UTF-8

# linux libs 
RUN apt-get update \
    && apt-get install -y --no-install-recommends \
    gcc curl libpq-dev \ 
    && pip3 install openpyxl pandas apache-airflow \
    && apt-get autoremove -yqq --purge \
    && apt-get clean \
    && rm -rf /var/lib/apt/lists/* 

# use airflow for r/w files
USER airflow

py file inside dags folder

import os
import pandas as pd
from datetime import datetime, timedelta

from airflow import DAG

from airflow.operators.python import PythonOperator
from airflow.operators.dummy import DummyOperator



# pipeline setup
dag = DAG(
    'pipeline_etl',
    start_date=datetime.now(),
    schedule_interval='@daily',
    catchup=False,
)

URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/00352/Online%20Retail.xlsx"

def read_xls():
    df = pd.read_excel(URL,nrows=1000)
    return df


run_python_report = PythonOperator(
    task_id='python_report', python_callable=read_xls, dag=dag
)


start_op = DummyOperator(task_id='start_task', dag=dag)
end_op = DummyOperator(task_id='end_task', dag=dag)

start_op >> run_python_report >> end_op


Solution 1:[1]

Jump in inside the container and install manually

Getting the airflow server container id:

$ docker ps

Go inside container:

$ docker exec -it <id> bash

and finally install the package:

$ pip install openpyxl

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1