'How to extract the image names and labels in the training set after completing the active learning loop and write them to a CSV file?

I am using the Keras script at https://modal-python.readthedocs.io/en/latest/content/examples/Keras_integration.html to perform active learning for a binary classification task. After completing the active learning loop, how do we extract the image names and labels in the training set that gives the optimal test performance and write them to a CSV file?

from tensorflow import keras
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from modAL.models import ActiveLearner
from modAL.uncertainty import entropy_sampling


# build function for the Keras' scikit-learn API
def create_keras_model():
    model = Sequential()
    model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))

    model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy'])

    return model


# create the classifier
classifier = KerasClassifier(create_keras_model)

# read training data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 28, 28, 1).astype('float32') / 255
X_test = X_test.reshape(10000, 28, 28, 1).astype('float32') / 255
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)

# assemble initial data
n_initial = 1000
initial_idx = np.random.choice(range(len(X_train)), size=n_initial, replace=False)
X_initial = X_train[initial_idx]
y_initial = y_train[initial_idx]

# generate the pool
# remove the initial data from the training dataset
X_pool = np.delete(X_train, initial_idx, axis=0)
y_pool = np.delete(y_train, initial_idx, axis=0)

"""
Training the ActiveLearner
"""

# initialize ActiveLearner
learner = ActiveLearner(
    estimator=classifier,
    X_training=X_initial, y_training=y_initial,
    verbose=1
)

# the active learning loop
n_queries = 100
for idx in range(n_queries):
    query_idx, query_instance = learner.query(X_pool, n_instances=100, verbose=0)
    print(query_idx)
    learner.teach(
        X=X_pool[query_idx], y=y_pool[query_idx], only_new=True,
        verbose=1
    )
    # remove queried instance from pool
    X_pool = np.delete(X_pool, query_idx, axis=0)
    y_pool = np.delete(y_pool, query_idx, axis=0)

# the final accuracy score
print(learner.score(X_test, y_test, verbose=1))


Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source