'Get matrix entries based on upper and lower bound vectors?
so let`s say I have a matrix mat= [[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6]] and a lower bound vector vector_low = [2.1,1.9,1.7] and upper bound vector vector_up = [3.1,3.5,4.1].
How do I get the values in the matrix in between the upper and lower bounds for every row?
Expected Output: [[3],[2,3],[2,3,4]] (it`s a list @mozway)
alternatively a vector with all of them would also do...
(Extra question: get the values of the matrix that are between the upper and lower bound, but rounded down/up to the next value in the matrix.. Expected Output: [[2,3,4],[1,2,3,4],[1,2,3,4,5]])
There should be a fast solution without loop, hope someone can help, thanks!
PS: In the end I just want to sum over the list entries, so the output format is not important...
Solution 1:[1]
I probably shouldn't indulge you since you haven't provided the code I asked for, but to satisfy my own curiosity, here my solution(s)
Your lists:
In [72]: alist = [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6]]
In [73]: low = [2.1,1.9,1.7]; up = [3.1,3.5,4.1]
A utility function:
In [74]: def between(row, l, u):
...: return [i for i in row if l <= i <= u]
and the straightforward list comprehension solution - VERY PYTHONIC:
In [75]: [between(row, l, u) for row, l, u in zip(alist, low, up)]
Out[75]: [[3], [2, 3], [2, 3, 4]]
A numpy solutions requires starting with arrays:
In [76]: arr = np.array(alist)
In [77]: Low = np.array(low)
...: Up = np.array(up)
We can check the bounds with:
In [79]: Low[:, None] <= arr
Out[79]:
array([[False, False, True, True, True, True],
[False, True, True, True, True, True],
[False, True, True, True, True, True]])
In [80]: (Low[:, None] <= arr) & (Up[:,None] >= arr)
Out[80]:
array([[False, False, True, False, False, False],
[False, True, True, False, False, False],
[False, True, True, True, False, False]])
Applying the mask to index arr produces a flat array of values:
In [81]: arr[_]
Out[81]: array([3, 2, 3, 2, 3, 4])
to get values by row, we still have to iterate:
In [82]: [row[mask] for row, mask in zip(arr, Out[80])]
Out[82]: [array([3]), array([2, 3]), array([2, 3, 4])]
For the small case I expect the list approach to be faster. For larger cases [81] will do better - IF we already have arrays. Creating arrays from the lists is not a time-trivial task.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | hpaulj |
