'Contiguous array warning in Python (numba)

I have the following snippet of code where I've used numba in order to speed up my code:

import numpy as np
from numba import jit

Sigma = np.array([
                  [1, 1, 0.5, 0.25],
                  [1, 2.5, 1, 0.5],
                  [0.5, 1, 0.5, 0.25],
                  [0.25, 0.5, 0.25, 0.25]
])
Z = np.array([0.111, 0.00658])

@jit(nopython=True)
def mean(Sigma, Z):
  return np.dot(np.dot(Sigma[0:2, 2:4], linalg.inv(Sigma[2:4, 2:4])), Z)

print(mean(Sigma, Z))

However, numba is complaining

NumbaPerformanceWarning: np.dot() is faster on contiguous arrays, called on (array(float64, 2d, A), array(float64, 2d, F))
  return np.dot(np.dot(Sigma[0:2, 2:4], linalg.inv(Sigma[2:4, 2:4])), Z)

If I'm not mistaken (after reading this), the contiguous structure of the numpy arrays is broken due to the slicing of sub-matrices from Sigma (i.e., "Sigma[0:2, 2:4]"). Is this correct? If so is there any way to resolve this warning? I believe resolving this warning would help speed up my code which is my main goal. Thanks.



Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source