'Choosing parameters for HOUGH_GRADIENT_ALT
I am trying to solve this problems for hours already, and similar issues on StackOverflow did not help me.
Imagine I have this image (in reality it is a more complicated image but I'll stay with a simple example for now):
I do the following for the HOUGH_GRADIENT:
import cv2
import numpy as np
img = cv2.cvtColor(cv2.imread("example.png"), cv2.COLOR_BGR2GRAY)
img_blur = cv2.GaussianBlur(img, (9, 9), 1.5)
edges = cv2.Canny(img_blur, threshold1=50, threshold2=250)
circles = cv2.HoughCircles(
edges, cv2.HOUGH_GRADIENT, 1.5, 20,
minRadius=10, maxRadius=100, param1=100, param2=100
)
img_cp = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if circles is not None:
circles = np.round(circles[0, :]).astype("int")
for (x, y, r) in circles:
cv2.circle(img_cp, (x, y), r, (0, 255, 0), 4)
This works without any problems and detects the inner circles just as I want:
I was trying to use HOUGH_GRADIENT_ALT instead as the OpenCV repo claims it to work better. From what I understand, most function call arguments should have the same meaning instead of param1 and param2.
So, I try:
circles = cv2.HoughCircles(
edges, cv2.HOUGH_GRADIENT_ALT, 1.5, 20,
minRadius=10, maxRadius=100, param1=300, param2=0.9
)
And I get nothing. I have tried many different parameters but to no result. Not only I do not understand how to fix it but also I do not understand why it would not work. Any help would be very appreciated.
OpenCV version 4.5.5.
Solution 1:[1]
I solved problem. Try this: Edit: we cannot used this cv2.HOUGH_GRADIENT_ALT
#!/usr/bin/python39
#OpenCV 4.5.5 Raspberry Pi 3/B/4B-w/4/8GB RAM, Bullseye,v11.
#Date: 10th May, 2022
import numpy as np
import cv2
img = cv2.imread('circle.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
bilateral = cv2.bilateralFilter(gray,10,50,50)
minDist = 30
param1 = 30
param2 = 30
minRadius = 5
maxRadius = 100
circles = cv2.HoughCircles(bilateral, cv2.HOUGH_GRADIENT, 1, minDist, param1=param1, param2=param2, minRadius=minRadius, maxRadius=maxRadius)
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 4)
cv2.imwrite('inner_circle.png', img)
# Show result for testing:
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Output:
Edit: we can cv2.HOUGH_GRADINT_ALT And used snipped from @Valeria.
import numpy as np
import cv2
img = cv2.imread('circle.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
bilateral = cv2.bilateralFilter(gray,10,50,50)
#circles = cv2.HoughCircles(bilateral, cv2.HOUGH_GRADIENT_ALT, 1, minDist, param1=param1, param2=param2, minRadius=minRadius, maxRadius=maxRadius)
circles = cv2.HoughCircles(bilateral,
cv2.HOUGH_GRADIENT_ALT,
1.5, 20,
minRadius=10, maxRadius=100,
param1=300, param2=0.9)
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 4)
cv2.imwrite('inner_circle1.png', img)
# Show result for testing:
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Output:
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 |




