When using the scikit-learn library in Python, I can use the CountVectorizer to create ngrams of a desired length (e.g. 2 words) like so: from sklearn.metrics.
gtksourceview
vgg-net
infinite-ajax-scroll
ion-item
day-cq
pattern-layout
voice-recording
sequelpro
bde
ddx
suiteql
google-blogger-api
azure-cosmosdb-changefeed
1password
html5-fullscreen
android-jetpack-compose-surface
uicomponents
subscript
textfieldparser
react-navigation-shared-element
vscode-remote-ssh
libktx
swagger-codegen
mtkview
weblogic-10.x
google-font-api
tailwind-css
gnu-sort
large-scale
fhir-net-api