'ValueError: Shapes (None, 8) and (None, 3) are incompatible
Sorry for my bad english I have this error ValueError: Shapes (None, 8) and (None, 3) are incompatible And this is my model
num_of_classes = get_num_of_classes()
model = Sequential()
model.add(Conv2D(16, (2,2), input_shape=(image_x, image_y, 1), activation='relu') )
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
model.add(Conv2D(32, (3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(3, 3), padding='same'))
model.add(Conv2D(64, (5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(5, 5), padding='same'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_of_classes, activation='softmax'))
tf.keras.optimizers.SGD(lr=1e-2)
sgd = tf.keras.optimizers.SGD(lr=1e-2)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
Finally error in this
with open("train_images", "rb") as f:
train_images = np.array(pickle.load(f))
with open("train_labels", "rb") as f:
train_labels = np.array(pickle.load(f), dtype=np.int32)
with open("val_images", "rb") as f:
val_images = np.array(pickle.load(f))
with open("val_labels", "rb") as f:
val_labels = np.array(pickle.load(f), dtype=np.int32)
train_images = np.reshape(train_images, (train_images.shape[0], image_x, image_y, 1))
val_images = np.reshape(val_images, (val_images.shape[0], image_x, image_y, 1))
train_labels = np_utils.to_categorical(train_labels)
val_labels = np_utils.to_categorical(val_labels)
model, callbacks_list = cnn_model()
model.summary()
print(model.summary())
--> model.fit(train_images, train_labels, validation_data=(val_images, val_labels), epochs=15, batch_size=500, callbacks=callbacks_list)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
