'unable to reproduce coordconv results
Hey I've been trying to implement this paper's Supervised Coordinate Regression part https://paperswithcode.com/method/coordconv
https://arxiv.org/pdf/1807.03247.pdf (page 6 section 4.2)
here's the model I've been trying to use
class CoordConv(nn.Module):
def __init__(self, with_r=False, **kwargs):
super().__init__()
self.addcoords = AddCoords(with_r=with_r)
self.conv = nn.Sequential(
nn.Conv2d(5, 8, kernel_size=(1, 1), padding='same', bias=False),
nn.Conv2d(8, 8, kernel_size=(1, 1), padding='same', bias=False),
nn.Conv2d(8, 8, kernel_size=(1, 1), padding='same', bias=False),
nn.Conv2d(8, 8, kernel_size=(3, 3), padding='same', bias=False),
nn.Conv2d(8, 2, kernel_size=(3, 3), padding='same', bias=False),
nn.MaxPool2d(kernel_size=64,stride=64,padding=0)
)
def forward(self, x):
ret = self.addcoords(x)
ret = self.conv(ret)
return ret
as mentioned in paper (page 15 S3)
with optimizer
optimizer_ft = torch.optim.Adam(model_ft.parameters(),lr=1e-3)
using MSE loss
But the best loss I've got is 33, which is very far from the 100% accuracy the paper claims.
what am I doing wrong here?
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
