'Sometimes Low Accuracy- Sometimes High Accuracy in Same Code and Dataset
I'm new at CapsulNet. Using CapsNet Keras code of XifengGuo. https://github.com/XifengGuo/CapsNet-Keras/tree/tf2.2 The code is running on MNIST dataset very well, but when i trained model with my own dataset, sometimes i get accuracy %48, but sometimes %95. When it is %48, accuracy showing the same value every epoch.I also tried with different datasets. But it did the same. How can i solve it? Please help me. I convert images to grayscale. It turn MNIST format.
Thanks everybody. I have add capslayer code.
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras import initializers, layers
class Length(layers.Layer):
def call(self, inputs, **kwargs):
return tf.sqrt(tf.reduce_sum(tf.square(inputs), -1)+ K.epsilon())
def compute_output_shape(self, input_shape):
return input_shape[:-1]
def get_config(self):
config = super(Length, self).get_config()
return config
class Mask(layers.Layer):
def call(self, inputs, **kwargs):
if type(inputs) is list: # true label is provided with shape = [None, n_classes], i.e. one-hot code.
assert len(inputs) == 2
inputs, mask = inputs
else: # if no true label, mask by the max length of capsules. Mainly used for prediction
# compute lengths of capsules
x = tf.sqrt(tf.reduce_sum(tf.square(inputs), -1))
# generate the mask which is a one-hot code.
# mask.shape=[None, n_classes]=[None, num_capsule]
mask = tf.one_hot(indices=tf.argmax(x, 1), depth=x.shape[1])
# inputs.shape=[None, num_capsule, dim_capsule]
# mask.shape=[None, num_capsule]
# masked.shape=[None, num_capsule * dim_capsule]
masked = K.batch_flatten(inputs * tf.expand_dims(mask, -1))
return masked
def compute_output_shape(self, input_shape):
if type(input_shape[0]) is tuple: # true label provided
return tuple([None, input_shape[0][1] * input_shape[0][2]])
else: # no true label provided
return tuple([None, input_shape[1] * input_shape[2]])
def get_config(self):
config = super(Mask, self).get_config()
return config
def squash(vectors, axis=-1):
s_squared_norm = tf.reduce_sum(tf.square(vectors), axis, keepdims=True)
scale = s_squared_norm / (1 + s_squared_norm) / tf.sqrt(s_squared_norm + K.epsilon())
return scale * vectors
class CapsuleLayer(layers.Layer):
def __init__(self, num_capsule, dim_capsule, routings=3,
kernel_initializer='glorot_uniform',
**kwargs):
super(CapsuleLayer, self).__init__(**kwargs)
self.num_capsule = num_capsule
self.dim_capsule = dim_capsule
self.routings = routings
self.kernel_initializer = initializers.get(kernel_initializer)
def build(self, input_shape):
assert len(input_shape) >= 3, "The input Tensor should have shape=[None, input_num_capsule, input_dim_capsule]"
self.input_num_capsule = input_shape[1]
self.input_dim_capsule = input_shape[2]
# Transform matrix, from each input capsule to each output capsule, there's a unique weight as in Dense layer.
self.W = self.add_weight(shape=[self.num_capsule, self.input_num_capsule,
self.dim_capsule, self.input_dim_capsule],
initializer=self.kernel_initializer,
name='W')
self.built = True
def call(self, inputs, training=None):
# inputs.shape=[None, input_num_capsule, input_dim_capsule]
# inputs_expand.shape=[None, 1, input_num_capsule, input_dim_capsule, 1]
inputs_expand = tf.expand_dims(tf.expand_dims(inputs, 1), -1)
# Replicate num_capsule dimension to prepare being multiplied by W
# inputs_tiled.shape=[None, num_capsule, in
# put_num_capsule, input_dim_capsule, 1]
inputs_tiled = tf.tile(inputs_expand, [1, self.num_capsule, 1, 1, 1])
# Compute `inputs * W` by scanning inputs_tiled on dimension 0.
# W.shape=[num_capsule, input_num_capsule, dim_capsule, input_dim_capsule]
# x.shape=[num_capsule, input_num_capsule, input_dim_capsule, 1]
# Regard the first two dimensions as `batch` dimension, then
# matmul(W, x): [..., dim_capsule, input_dim_capsule] x [..., input_dim_capsule, 1] -> [..., dim_capsule, 1].
# inputs_hat.shape = [None, num_capsule, input_num_capsule, dim_capsule]
inputs_hat = tf.map_fn(lambda x: tf.matmul(self.W, x), elems=inputs_tiled)
inputs_hat = tf.squeeze(inputs_hat,4)
# Begin: Routing algorithm ---------------------------------------------------------------------#
# The prior for coupling coefficient, initialized as zeros.
# b.shape = [None, self.num_capsule, 1, self.input_num_capsule].
b = tf.zeros(shape=[tf.shape(inputs_hat)[0], self.num_capsule, 1, self.input_num_capsule])
assert self.routings > 0, 'The routings should be > 0.'
for i in range(self.routings):
# c.shape=[batch_size, num_capsule, 1, input_num_capsule]
c = tf.nn.softmax(b, axis=1)
# c.shape = [batch_size, num_capsule, 1, input_num_capsule]
# inputs_hat.shape=[None, num_capsule, input_num_capsule, dim_capsule]
# The first two dimensions as `batch` dimension,
# then matmal: [..., 1, input_num_capsule] x [..., input_num_capsule, dim_capsule] -> [..., 1, dim_capsule].
# outputs.shape=[None, num_capsule, 1, dim_capsule]
print('c= ',c.shape)
outputs= tf.matmul(c, inputs_hat)
outputs=squash(outputs)
#outputs = squash(outputs) # [None, 10, 1, 16]
if i < self.routings - 1:
# outputs.shape = [None, num_capsule, 1, dim_capsule]
# inputs_hat.shape=[None, num_capsule, input_num_capsule, dim_capsule]
# The first two dimensions as `batch` dimension, then
# matmal:[..., 1, dim_capsule] x [..., input_num_capsule, dim_capsule]^T -> [..., 1, input_num_capsule].
# b.shape=[batch_size, num_capsule, 1, input_num_capsule]
b += tf.matmul(outputs, inputs_hat, transpose_b=True)
# End: Routing algorithm -----------------------------------------------------------------------#
outputs = tf.squeeze(outputs,2)
return outputs
def compute_output_shape(self, input_shape):
return tuple([None, self.num_capsule, self.dim_capsule])
def get_config(self):
config = {
'num_capsule': self.num_capsule,
'dim_capsule': self.dim_capsule,
'routings': self.routings
}
base_config = super(CapsuleLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def PrimaryCap(inputs, dim_capsule, n_channels, kernel_size, strides, padding):
output = layers.Conv2D(filters=dim_capsule*n_channels, kernel_size=kernel_size, strides=strides, padding=padding,
name='primarycap_conv2d')(inputs)
outputs = layers.Reshape(target_shape=[-1, dim_capsule], name='primarycap_reshape')(output)
outputs = layers.Lambda(squash, name='primarycap_squash')(outputs)
return outputs
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
