'Sklearn MLP Classifier Hyperparameter Optimization (RandomizedSearchCV)
I have the following parameters set up :
parameter_space = {
'hidden_layer_sizes': [(sp_randint(100,600),sp_randint(100,600),), (sp_randint(100,600),)],
'activation': ['tanh', 'relu', 'logistic'],
'solver': ['sgd', 'adam', 'lbfgs'],
'alpha': stats.uniform(0.0001, 0.9),
'learning_rate': ['constant','adaptive']}
All the parameters except the hidden_layer_sizes is working as expected. However, fitting this RandomizedSearchCV model and displaying it's verbose text shows that it treats hidden_layer_sizes as :
hidden_layer_sizes=(<scipy.stats._distn_infrastructure.rv_frozen object
and goes on to throw : TypeError: '<=' not supported between instances of 'rv_frozen' and 'int'
This result is obtained instead of the expected 1 or 2 layer MLP with hidden layer neurons between 100 and 600. Any ideas / other related tips?
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
