'Renaming the column names of pandas dataframe is not working as expected - python
I am having below pandas dataframe df. I am trying to rename the column names but it not working as expected.
Code:
mapping = {df.columns[0]:'Date', df.columns[1]: 'A', df.columns[2]:'B', df.columns[3]: 'C',df.columns[4]:'D', df.columns[5]: 'E',df.columns[6]:'F', df.columns[7]: 'G',df.columns[8]:'H', df.columns[9]: 'J'}
df.rename(columns=mapping)
Output of df.columns:
MultiIndex(levels=[['A Index', 'B Index', 'C Index', 'D Index', 'E Index', 'F Index', 'G Index', 'H Index', 'I Index', 'J Index', 'K Index', 'L Index', 'M Index', 'N Index', 'O Index', 'date', 'index'], ['PX_LAST', '']],
labels=[[16, 15, 11, 9, 10, 6, 3, 4, 2, 5, 14, 1, 13, 12, 7, 0, 8], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
names=['ticker', 'field'])
Even after running the code, column name stays the same. Can anyone help rename column names of this dataframe.
Solution 1:[1]
Adding inplace=True to the rename call will work.
Though, I'm not sure what the result is if I don't specify inplace=True, since I don't see any change.
Solution 2:[2]
Given the official documentation from pandas, the default value on axis parameter is 0 (meaning index).
Thus, changing your command to:
df.rename(columns = mapping, axis = 1)
, where axis equal to 1 means columns, will work as expected.
Also, as mentioned before, you can use the inplace = True so you won't have to reassign your updated dataframe.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | cigien |
| Solution 2 | zoumpp |
