'Pytorch says that CUDA is not available

I'm trying to run Pytorch on a laptop that I have. It's an older model but it does have an Nvidia graphics card. I realize it is probably not going to be sufficient for real machine learning but I am trying to do it so I can learn the process of getting CUDA installed.

I have followed the steps on the installation guide for Ubuntu 18.04 (my specific distribution is Xubuntu).

My graphics card is a GeForce 845M, verified by lspci | grep nvidia:

01:00.0 3D controller: NVIDIA Corporation GM107M [GeForce 845M] (rev a2)
01:00.1 Audio device: NVIDIA Corporation Device 0fbc (rev a1)

I also have gcc 7.5 installed, verified by gcc --version

gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

And I have the correct headers installed, verified by trying to install them with sudo apt-get install linux-headers-$(uname -r):

Reading package lists... Done
Building dependency tree       
Reading state information... Done
linux-headers-4.15.0-106-generic is already the newest version (4.15.0-106.107).

I then followed the installation instructions using a local .deb for version 10.1.

Npw, when I run nvidia-smi, I get:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.87.00    Driver Version: 418.87.00    CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce 845M        On   | 00000000:01:00.0 Off |                  N/A |
| N/A   40C    P0    N/A /  N/A |     88MiB /  2004MiB |      1%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0       982      G   /usr/lib/xorg/Xorg                            87MiB |
+-----------------------------------------------------------------------------+

and I run nvcc -V I get:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243

I then performed the post-installation instructions from section 6.1, and so as a result, echo $PATH looks like this:

/home/isaek/anaconda3/envs/stylegan2_pytorch/bin:/home/isaek/anaconda3/bin:/home/isaek/anaconda3/condabin:/usr/local/cuda-10.1/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

echo $LD_LIBRARY_PATH looks like this:

/usr/local/cuda-10.1/lib64

and my /etc/udev/rules.d/40-vm-hotadd.rules file looks like this:

# On Hyper-V and Xen Virtual Machines we want to add memory and cpus as soon as they appear
ATTR{[dmi/id]sys_vendor}=="Microsoft Corporation", ATTR{[dmi/id]product_name}=="Virtual Machine", GOTO="vm_hotadd_apply"
ATTR{[dmi/id]sys_vendor}=="Xen", GOTO="vm_hotadd_apply"
GOTO="vm_hotadd_end"

LABEL="vm_hotadd_apply"

# Memory hotadd request

# CPU hotadd request
SUBSYSTEM=="cpu", ACTION=="add", DEVPATH=="/devices/system/cpu/cpu[0-9]*", TEST=="online", ATTR{online}="1"

LABEL="vm_hotadd_end"

After all of this, I even compiled and ran the samples. ./deviceQuery returns:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce 845M"
  CUDA Driver Version / Runtime Version          10.1 / 10.1
  CUDA Capability Major/Minor version number:    5.0
  Total amount of global memory:                 2004 MBytes (2101870592 bytes)
  ( 4) Multiprocessors, (128) CUDA Cores/MP:     512 CUDA Cores
  GPU Max Clock rate:                            863 MHz (0.86 GHz)
  Memory Clock rate:                             1001 Mhz
  Memory Bus Width:                              64-bit
  L2 Cache Size:                                 1048576 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            No
  Supports Cooperative Kernel Launch:            No
  Supports MultiDevice Co-op Kernel Launch:      No
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.1, NumDevs = 1
Result = PASS

and ./bandwidthTest returns:

[CUDA Bandwidth Test] - Starting...
Running on...

 Device 0: GeForce 845M
 Quick Mode

 Host to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)    Bandwidth(GB/s)
   32000000         11.7

 Device to Host Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)    Bandwidth(GB/s)
   32000000         11.8

 Device to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)    Bandwidth(GB/s)
   32000000         14.5

Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

But after all of this, this Python snippet (in a conda environment with all dependencies installed):

import torch
torch.cuda.is_available()

returns False

Does anybody have any idea about how to resolve this? I've tried to add /usr/local/cuda-10.1/bin to etc/environment like this:

PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games"
PATH=$PATH:/usr/local/cuda-10.1/bin

And restarting the terminal, but that didn't fix it. I really don't know what else to try.

EDIT - Results of collect_env for @kHarshit

Collecting environment information...
PyTorch version: 1.5.0
Is debug build: No
CUDA used to build PyTorch: 10.2

OS: Ubuntu 18.04.4 LTS
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
CMake version: Could not collect

Python version: 3.6
Is CUDA available: No
CUDA runtime version: 10.1.243
GPU models and configuration: GPU 0: GeForce 845M
Nvidia driver version: 418.87.00
cuDNN version: Could not collect

Versions of relevant libraries:
[pip] numpy==1.18.5
[pip] pytorch-ranger==0.1.1
[pip] stylegan2-pytorch==0.12.0
[pip] torch==1.5.0
[pip] torch-optimizer==0.0.1a12
[pip] torchvision==0.6.0
[pip] vector-quantize-pytorch==0.0.2
[conda] numpy                     1.18.5                   pypi_0    pypi
[conda] pytorch-ranger            0.1.1                    pypi_0    pypi
[conda] stylegan2-pytorch         0.12.0                   pypi_0    pypi
[conda] torch                     1.5.0                    pypi_0    pypi
[conda] torch-optimizer           0.0.1a12                 pypi_0    pypi
[conda] torchvision               0.6.0                    pypi_0    pypi
[conda] vector-quantize-pytorch   0.0.2                    pypi_0    pypi


Solution 1:[1]

TL; DR

  1. Install NVIDIA Toolkit provided by Canonical or NVIDIA third-party PPA.
  2. Reboot your workstation.
  3. Create a clean Python virtual environment (or reinstall all CUDA dependent packages).

Description

First install NVIDIA CUDA Toolkit provided by Canonical:

sudo apt install -y nvidia-cuda-toolkit

or follow NVIDIA developers instructions:

# ENVARS ADDED **ONLY FOR READABILITY**
NVIDIA_CUDA_PPA=https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/
NVIDIA_CUDA_PREFERENCES=https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
NVIDIA_CUDA_PUBKEY=https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub

# Add NVIDIA Developers 3rd-Party PPA
sudo wget ${NVIDIA_CUDA_PREFERENCES} -O /etc/apt/preferences.d/nvidia-cuda
sudo apt-key adv --fetch-keys ${NVIDIA_CUDA_PUBKEY}
echo "deb ${NVIDIA_CUDA_PPA} /" | sudo tee /etc/apt/sources.list.d/nvidia-cuda.list

# Install development tools
sudo apt update
sudo apt install -y cuda

then reboot the OS load the kernel with the NVIDIA drivers

Create an environment using your favorite manager (conda, venv, etc)

conda create -n stack-overflow pytorch torchvision
conda activate stack-overflow

or reinstall pytorch and torchvision into the existing one:

conda activate stack-overflow
conda install --force-reinstall pytorch torchvision

otherwise NVIDIA CUDA C/C++ bindings may not be correctly detected.

Finally ensure CUDA is correctly detected:

(stack-overflow)$ python3 -c 'import torch; print(torch.cuda.is_available())'
True

Versions

Solution 2:[2]

In my case, just restarting my machine made the GPU active again. The initial message I got was that the GPU is currently in use by another application. But when I looked at nvidia-smi, there was nothing that I saw. So, no changes to dependencies, and it just started working again.

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 JP Ventura
Solution 2 Rowan Gontier