'Pandas: Using .replace in a Dataframe but only replace on an exact match

In my Dataframe I'm using the following to replace 'stack' in the Brand column with 'stackoverflow'

df['Brand'] = df['Brand'].replace('stack', 'stackoverflow', regex=True)

Problem is if stackoverflow exists in the column, I end up with stackoverflowoverflow.

Is there a way to replace stack when the field in the column is only equal to stack and not effect other rows in the column that may contain the keyword stack?



Solution 1:[1]

Discovered the solution:

df['Brand'] = df['Brand'].str.replace(r'(?i)stack\b', r'stackoverflow')

Solution 2:[2]

This should do n would be useful if you have multiple replacements to do:

replace_dict = {'stack' : 'stackoverflow'}
replacement = {rf'\b{k}\b': v for k, v in replace_dict.items()}

df['Brand'] = df['Brand'].replace(replacement, regex=True)

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 a.WOL7
Solution 2 SM1312