'pandas combine two columns with null values
I have a df with two columns and I want to combine both columns ignoring the NaN values. The catch is that sometimes both columns have NaN values in which case I want the new column to also have NaN. Here's the example:
df = pd.DataFrame({'foodstuff':['apple-martini', 'apple-pie', None, None, None], 'type':[None, None, 'strawberry-tart', 'dessert', None]})
df
Out[10]:
foodstuff   type
0   apple-martini   None
1   apple-pie   None
2   None    strawberry-tart
3   None    dessert
4   None    None
I tried to use fillna and solve this :
df['foodstuff'].fillna('') + df['type'].fillna('')
and I got :
0      apple-martini
1          apple-pie
2    strawberry-tart
3            dessert
4                   
dtype: object
The row 4 has become a blank value. What I want in this situation is a NaN value since both the combining columns are NaNs.
0      apple-martini
1          apple-pie
2    strawberry-tart
3            dessert
4            None       
dtype: object
							
						Solution 1:[1]
Use fillna on one column with the fill values being the other column:
df['foodstuff'].fillna(df['type'])
The resulting output:
0      apple-martini
1          apple-pie
2    strawberry-tart
3            dessert
4               None
    					Solution 2:[2]
you can use the combine method with a lambda:
df['foodstuff'].combine(df['type'], lambda a, b: ((a or "") + (b or "")) or None, None)
(a or "") returns "" if a is None then the same logic is applied on the concatenation (where the result would be None if the concatenation is an empty string).
Solution 3:[3]
fillnaboth columns togethersum(1)to add themreplace('', np.nan)
df.fillna('').sum(1).replace('', np.nan)
0      apple-martini
1          apple-pie
2    strawberry-tart
3            dessert
4                NaN
dtype: object
    					Solution 4:[4]
If you deal with columns that contain something where the others don't and vice-versa, a one-liner that does well the job is
>>> df.rename(columns={'type': 'foodstuff'}).stack().unstack()
         foodstuff
0    apple-martini
1        apple-pie
2  strawberry-tart
3          dessert
... which solution also generalises well if you have multiple columns to "intricate", as long as you can define your ~.rename mapping. The intention behind such renaming is to create duplicates that ~.stack().unstack() will then process for you.
As explained, this solution only suits configuration with orthogonal columns, i.e. columns that never are simultaneously valued.
Solution 5:[5]
You can always fill the empty string in the new column with None
import numpy as np
df['new_col'].replace(r'^\s*$', np.nan, regex=True, inplace=True)
Complete code:
import pandas as pd
import numpy as np
df = pd.DataFrame({'foodstuff':['apple-martini', 'apple-pie', None, None, None], 'type':[None, None, 'strawberry-tart', 'dessert', None]})
df['new_col'] = df['foodstuff'].fillna('') + df['type'].fillna('')
df['new_col'].replace(r'^\s*$', np.nan, regex=True, inplace=True)
df
output:
    foodstuff   type    new_col
0   apple-martini   None    apple-martini
1   apple-pie   None    apple-pie
2   None    strawberry-tart strawberry-tart
3   None    dessert dessert
4   None    None    NaN
    					Solution 6:[6]
You can replace the non zero values with column names like
df1= df.replace(1, pd.Series(df.columns, df.columns))
Replace 0's with empty string and then merge the columns like below
f = f.replace(0, '') f['new'] = f.First+f.Second+f.Three+f.Four
Refer the full code below.
import pandas as pd
df = pd.DataFrame({'Second':[0,1,0,0],'First':[1,0,0,0],'Three':[0,0,1,0],'Four':[0,0,0,1], 'cl': ['3D', 'Wireless','Accounting','cisco']})
df2=pd.DataFrame({'pi':['Accounting','cisco','3D','Wireless']})
df1= df.replace(1, pd.Series(df.columns, df.columns))
f = pd.merge(df1,df2,how='right',left_on=['cl'],right_on=['pi'])
f = f.replace(0, '')
f['new'] = f.First+f.Second+f.Three+f.Four
df1:
In [3]: df1                                                                                                                                                                              
Out[3]: 
   Second  First  Three  Four          cl
0       0  First      0     0          3D
1  Second      0      0     0    Wireless
2       0      0  Three     0  Accounting
3       0      0      0  Four       cisco
df2:
In [4]: df2                                                                                                                                                                              
Out[4]: 
           pi
0  Accounting
1       cisco
2          3D
3    Wireless
Final df will be:
In [2]: f                                                                                                                                                                                
Out[2]: 
   Second  First  Three  Four          cl          pi     new
0          First                       3D          3D   First
1  Second                        Wireless    Wireless  Second
2                 Three        Accounting  Accounting   Three
3                        Four       cisco       cisco    Four
    					Solution 7:[7]
We can make this problem even more complete and have a universal solution for this type of problem.
The key things in there are that we wish to join a group of columns together but just ignore NaNs.
Here is my answer:
df = pd.DataFrame({'foodstuff':['apple-martini', 'apple-pie', None, None, None], 
               'type':[None, None, 'strawberry-tart', 'dessert', None],
              'type1':[98324, None, None, 'banan', None],
              'type2':[3, None, 'strawberry-tart', np.nan, None]})
df=df.fillna("NAN")
df=df.astype('str')
df["output"] = df[['foodstuff', 'type', 'type1', 'type2']].agg(', '.join, axis=1)
df['output'] = df['output'].str.replace('NAN, ', '')
df['output'] = df['output'].str.replace(', NAN', '')
    					Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source | 
|---|---|
| Solution 1 | root | 
| Solution 2 | sirfz | 
| Solution 3 | piRSquared | 
| Solution 4 | |
| Solution 5 | Vikash Singh | 
| Solution 6 | Mastan Basha Shaik | 
| Solution 7 | Sabito 錆兎 stands with Ukraine | 


