'Optimizing Python code with 2D array, nested for loop and if conditions
Is there any way to improve the performance of below python code. I tried list comprehension, but not sure how to implement it on below scenario. *In below code, intcons is a dataframe
p = [[0 for i in range(30)] for j in range(5)]
violate = [[ 0 for i in range(8)] for j in range(4)]
mm = []
intcons['first.store_id'] = ((intcons.store_id != intcons.store_id.shift()))
for i in intcons.index:
if intcons['first.store_id'][i] == True:
addit = 1
for q in range(1, 6):
intcons[f'f{q}'] = 0
p[1][q] = 0
p[3][q] = 0
mm[1] = 1
mm[2] = np.log(intcons['K1'])
mm[3] = np.log(intcons['K2'])
mm[4] = np.log(intcons['K3'])
mm[5] = np.log(intcons['K4'])
intercep = 1
for er in range(6, 10):
for j in range(1, 5):
p[er][j] = 0
if er == j + 5:
p[er][j] = 1
for hh in range(1, 4):
for z in range(1, 2):
violate[hh][z] = 0
print(i)
else:
addit = addit + 1
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|