'LabelEncoding a permutation of combination of columns
I'd like to create class labels for a permutation of two columns using sklearn's LabelEncoder(). How do I achieve the following behavior?
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
df = pd.read_csv("data.csv", sep=",")
df
# A B
# 0 1 Yes
# 1 2 No
# 2 3 Yes
# 3 4 Yes
I'd like to have the permutation of combination of A && B rather than encoding these two columns separately:
df['A'].astype('category')
#Categories (4, int64): [1, 2, 3, 4, ]
df['B'].astype('category')
#Categories (2, object): ['Yes','No']
#Column C should have 4 * 2 classes:
(1,Yes)=1 (1,No)=5
(2,Yes)=2 (2,No)=6
(3,Yes)=3 (3,No)=7
(4,Yes)=4 (4,No)=8
#Newdf
# A B C
# 0 1 Yes 1
# 1 2 No 6
# 2 3 Yes 3
# 3 4 Yes 4
Solution 1:[1]
We can create the mapping df with cross merge
out = df.merge(df[['B']].drop_duplicates().merge(df['A'].drop_duplicates(),how='cross').assign(C=lambda x : x.index+1))
Out[415]:
A B C
0 1 Yes 1
1 2 No 6
2 3 Yes 3
3 4 Yes 4
More info
df[['B']].drop_duplicates().merge(df['A'].drop_duplicates(),how='cross').assign(C=lambda x : x.index+1)
Out[417]:
B A C
0 Yes 1 1
1 Yes 2 2
2 Yes 3 3
3 Yes 4 4
4 No 1 5
5 No 2 6
6 No 3 7
7 No 4 8
Solution 2:[2]
You can create additional column merging values from 2 columns into one tuple. But LabelEncoder cannot encode the tuples, so additionally you need to get hash() of the tuple:
df['AB'] = df.apply(lambda row: hash((row['A'], row['B'])), axis=1)
le = LabelEncoder()
df['C'] = le.fit_transform(df['AB'])
However, if you want to preserve the exact labels order (that you specified), using LabelEncoder() doesn't make sense. You can simply compute the C column like that:
df['C'] = df['A'] + (df['B']=='No') * df['A'].max()
Output:
A B C
0 1 Yes 1
1 2 No 6
2 3 Yes 3
3 4 Yes 4
EDIT:
If you want to keep the labels for missed combinations (e.g. (2, 'Yes')) and need a solution for arbitrary number of classes, you can use 2 LabelEncoder():
leA = LabelEncoder()
leB = LabelEncoder()
leA.fit(df['A'])
leB.fit(df['B'])
df['C'] = leA.transform(df['A']) + leA.classes_.size
leB.transform(df['B']) + 1 # if you want labels to start from 1
But in this case you cannot preserve the custom order, the list of labels will be automatically sorted, e.g. [1,2,3,4] and ['No','Yes'].
Output:
A B C
0 1 Yes 5
1 2 No 2
2 3 Yes 7
3 4 Yes 8
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | |
| Solution 2 |
