'InvalidArgumentError_Graph execution error
img_height,img_width=100,100
batch_size=32
import tensorflow as tf
train_ds = tf.keras.preprocessing.image_dataset_from_directory(train_Path,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(train_Path,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
model = Sequential()
model.add(ResNet50(include_top=False,pooling='avg',input_shape=(100,100,3)))
model.add(Dense(5, activation='softmax'))
model.layers[0].trainable = False
model.summary()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])steps_per_epoch_training = len(train_ds)/ batch_size_training
steps_per_epoch_validation = len(val_ds)/ batch_size_validation
num_epochs = 10
history = model.fit(train_ds , epochs=num_epochs, batch_size=64, validation_data = val_ds)
InvalidArgumentError: Graph execution error
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
