'How to restore and use trained tacotron2 model
I am new in text-to-speech field. I tried to train Tacotron2 using this tutorial and then I stored checkpoints and nemo file. Now I want to restore model and use it to generate mel spectrograms but I don't know how can I do that.
I found this pytorch code that use pretrained models, then I tried to change Tacotron part of this code to load from my trained model:
from nemo.collections.tts.models import Tacotron2Model
import torch
check_point_path = '/content/drive/My Drive/***/checkpoints/'
tacotron2 = Tacotron2Model.restore_from(check_point_path + 'Tacotron2.nemo')
tacotron2 = tacotron2.to('cuda')
tacotron2.eval()
waveglow = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_waveglow', model_math='fp16')
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to('cuda')
waveglow.eval()
text = "some words"
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tts_utils')
sequences, lengths = utils.prepare_input_sequence([text])
with torch.no_grad():
mel, _, _ = tacotron2.infer(sequences, lengths)
audio = waveglow.infer(mel)
audio_numpy = audio[0].data.cpu().numpy()
rate = 22050
from IPython.display import Audio
Audio(audio_numpy, rate=rate)
But I get this error:
AttributeError Traceback (most recent call last)
<ipython-input-6-32fe16cfb933> in <module>()
15 with torch.no_grad():
---> 16 mel, _, _ = tacotron2.infer(sequences, lengths)
17 audio = waveglow.infer(mel)
18 audio_numpy = audio[0].data.cpu().numpy()
/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in __getattr__(self, name)
1129 return modules[name]
1130 raise AttributeError("'{}' object has no attribute '{}'".format(
-> 1131 type(self).__name__, name))
1132
1133 def __setattr__(self, name: str, value: Union[Tensor, 'Module']) -> None:
AttributeError: 'Tacotron2Model' object has no attribute 'infer'
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
