'How to get the values of z(max) and z(min) from this cubic EOS using newton's method in jupyter notebook?
#the equation is as z^3+(B-1)z^2+[A-B^2-2B(B+1)]z-[AB-B^2(B+1)]=0 What are the value of z(max) and z(min)? when A=0.6184 and B=0.112, m[1]=1+sqrt(2) and m[2]=1-sqrt(2)
import numpy as np import scipy.optimize z=np.zeros for i in range (0,N): znew=z-(z^3+((m[1]+m[2]-1)*B-1)*z^2)+(A+m[1]m[2]B^2-(m[1]+m[2])B(B+1)z)-(AB+m[1]m[2]B^2(B+1))/3z^2+2z((m[1]+m[2]-1)*B-1)+(A+m[1]*m[2])*B^2-(m[1]+m[2])B(B+1) print(znew)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
