'How to find Longest non-decreasing Subsequence containing duplicates in O(n) or O(nlogn)?
We know about an algorithm that will find the Longest Increasing subsequence in O(nlogn). I was wondering whether we can find the Longest non-decreasing subsequence with similar time complexity? For example, consider an array : (4,10,4,8,9). The longest increasing subsequence is (4,8,9). And a longest non-decreasing subsequence would be (4,4,8,9).
Solution 1:[1]
First, here’s a “black box” approach that will let you find the longest nondecreasing subsequence using an off-the-shelf solver for longest increasing subsequences. Let’s take your sample array:
4, 10, 4, 8, 9
Now, imagine we transformed this array as follows by adding a tiny fraction to each number:
4.0, 10.1, 4.2, 8.3, 9.4
Changing the numbers this way will not change the results of any comparisons between two different integers, since the integer components have a larger magnitude difference than the values after the decimal point. However, if you compare the two 4s now, the latter 4 compares bigger than the previous one. If you now find the longest nondecreasing subsequence, you get back [4.0, 4.2, 8.3, 9.4], which you can then map back to [4, 4, 8, 9].
More generally, if you’re working with an array of n integer values, you can add i / n to each of the numbers, where i is its index, and you’ll be left with a sequence of distinct numbers. From there running a regular LIS algorithm will do the trick.
If you can’t work with fractions this way, you could alternatively multiply each number by n and then add in i, which also works.
On the other hand, suppose you have the code for a solver for LIS and want to convert it to one that solves the longest nondecreasing subsequence problem. The reasoning above shows that if you treat later copies of numbers as being “larger” than earlier copies, then you can just use a regular LIS. Given that, just read over the code for LIS and find spots where comparisons are made. When a comparison is made between two equal values, break the tie by considering the later appearance to be bigger than the earlier one.
Solution 2:[2]
I think the following will work in O(nlogn):
Scan the array from right to left, and for each element solve a subproblem of finding a longest subsequence starting from the given element of the array. E.g. if your array has indices from 0 to 4, then you start with the subarray [4,4] and check what's the longest sequence starting from 4, then you check subarray [3,4] and what's the longest subsequence starting from 3, next [2,4], and so on, until [0,4]. Finally, you choose the longest subsequence established in either of the steps.
For the last element (so subarray [4,4]) the longest sequence is always of length 1.
When in the next iteration you consider another element to the left (e.g., in the second step you consider the subarray [3,4], so the new element is element with the index 3 in the original array) you check if that element is not greater than some of the elements to its right. If so, you can take the result for some element from the right and add one.
For instance:
- [4,4] -> longest sequence of length 1 (9)
- [3,4] -> longest sequence of length 2 (8,9) 1+1 (you take the longest sequence from above which starts with 9 and add one to its length)
- [2,4] -> longest sequence of length 3 (4,8,9) 2+1 (you take the longest sequence from above, i.e. (8,9), and add one to its length)
- [1,4] -> longest sequence of length 1 (10) nothing to add to (10 is greater than all the elements to its right)
- [0,4] -> longest sequence of length 4 (4,4,8,9) 3+1 (you take the longest sequence above, i.e. (4,8,9), and add one to its length)
The main issue is how to browse all the candidates to the right in logarithmic time. For that you keep a sorted map (a balanced binary tree). The keys are the already visited elements of the array. The values are the longest sequence lengths obtainable from that element. No need to store duplicates - among duplicate keys store the entry with largest value.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | templatetypedef |
| Solution 2 |
