'How to delete the last column of data of a pandas dataframe

I have some cvs data that has an empty column at the end of each row. I would like to leave it out of the import or alternatively delete it after import. My cvs data's have a varying number of columns. I've tried using df.tail(), but haven't managed to choose the last column with it.

employment=pd.read_csv('./data/spanish/employment1976-1987thousands.csv',index_col=0,header=[7,8],encoding='latin-1')

Data:

4.- Resultados provinciales
Encuesta de Población Activa. Principales Resultados

Activos por provincia y grupo de edad (4).
Unidades:miles de personas


,Álava,,,,Albacete,,,,Alicante,,,,Almería,,,,Asturias,,,,Ávila,,,,Badajoz,,,,Balears (Illes),,,,Barcelona,,,,Burgos,,,,Cáceres,,,,Cádiz,,,,Cantabria,,,,Castellón de la Plana,,,,Ciudad Real,,,,Córdoba,,,,Coruña (A),,,,Cuenca,,,,Girona,,,,Granada,,,,Guadalajara,,,,Guipúzcoa,,,,Huelva,,,,Huesca,,,,Jaén,,,,León,,,,Lleida,,,,Lugo,,,,Madrid,,,,Málaga,,,,Murcia,,,,Navarra,,,,Orense,,,,Palencia,,,,Palmas (Las),,,,Pontevedra,,,,Rioja (La),,,,Salamanca,,,,Santa Cruz de Tenerife,,,,Segovia,,,,Sevilla,,,,Soria,,,,Tarragona,,,,Teruel,,,,Toledo,,,,Valencia,,,,Valladolid,,,,Vizcaya,,,,Zamora,,,,Zaragoza,,,,Ceuta y Melilla,,,,
,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,
1976TIII,"8.9","11.6","60.4","11.8","16.4","14.4","65.2","14.9","47.9","49.9","246.0","60.1","20.5","14.3","88.9","11.2","34.5","42.5","278.0","91.3","6.6","7.2","41.5","13.3","25.3","22.8","135.3","37.5","19.8","24.4","153.0","43.0","166.8","203.7","1079.0","230.7","14.1","16.4","86.0","23.8","17.0","18.3","86.6","28.6","31.0","38.7","180.4","29.8","15.3","19.2","120.6","30.4","19.9","15.3","104.2","23.4","19.7","19.5","97.5","29.7","28.0","23.9","140.5","30.1","29.1","46.1","263.8","70.0","8.9","6.2","45.7","14.6","19.7","19.7","123.0","35.3","26.8","22.5","141.0","36.2","4.8","6.0","33.1","13.4","23.1","31.6","174.5","33.8","11.9","14.3","83.8","18.8","7.0","9.3","50.3","20.0","22.4","23.4","125.8","28.6","22.7","21.6","143.1","50.9","12.5","13.7","89.5","33.2","14.3","14.7","134.0","54.7","136.6","207.5","1067.6","218.6","34.7","41.1","196.4","38.4","37.2","35.0","200.5","46.1","15.6","23.8","111.6","30.7","14.0","16.8","120.2","74.9","5.7","6.4","39.2","8.0","24.5","25.6","135.3","27.1","36.4","39.4","246.1","74.0","10.2","11.3","63.9","13.4","10.5","11.0","74.1","19.6","19.3","23.9","140.3","31.7","5.5","6.0","35.6","11.3","55.2","55.6","262.5","68.1","3.1","3.2","24.4","5.4","21.8","18.4","116.7","37.1","4.6","3.4","37.3","12.0","20.3","16.7","102.2","23.1","73.5","85.5","454.6","101.5","19.2","23.4","90.7","20.5","41.3","54.7","272.2","57.0","6.0","7.1","56.5","28.9","29.2","32.1","192.7","49.8","0.0","0.0","0.0","0.0",
1976TIV,"8.7","11.7","60.8","11.4","14.4","13.6","63.3","14.5","49.1","50.6","244.9","54.2","19.0","16.9","86.8","11.4","33.2","42.3","271.8","86.0","5.8","7.5","40.3","13.9","25.1","24.7","132.7","38.4","18.8","23.4","151.8","43.9","172.2","201.7","1070.7","228.1","11.1","15.7","82.5","21.1","16.4","18.0","89.2","26.6","32.6","40.0","176.5","30.5","15.8","18.1","121.3","30.2","19.0","17.3","106.3","24.1","19.9","19.0","101.7","26.9","25.3","22.3","142.7","28.9","30.0","42.4","267.6","70.1","7.3","7.0","44.4","13.0","17.8","21.4","122.8","34.0","28.4","21.6","140.5","36.8","4.7","6.6","32.6","10.8","24.8","32.7","177.2","32.3","11.9","12.5","85.4","20.5","6.9","8.5","48.8","19.9","22.4","22.1","127.6","25.1","18.5","21.1","137.8","48.7","12.4","11.1","84.9","31.5","13.6","15.6","132.7","52.0","144.0","202.3","1054.0","222.5","35.6","40.1","194.1","37.5","36.7","34.7","203.8","47.1","15.6","23.6","114.3","31.3","14.0","15.9","118.3","76.7","5.5","7.3","36.9","9.3","25.5","25.1","138.7","26.8","34.8","42.9","250.3","74.9","9.9","11.8","62.8","14.0","10.0","13.2","74.5","19.2","19.5","24.2","142.7","31.0","4.0","5.9","35.5","12.0","55.0","56.7","264.7","63.3","2.8","3.5","23.9","5.1","20.0","21.6","116.4","34.9","4.5","3.7","36.5","12.1","21.1","17.6","100.6","25.7","74.6","87.5","455.5","102.1","18.9","22.9","90.0","21.6","40.2","57.1","273.9","58.5","5.6","8.3","57.6","23.9","28.3","31.4","192.2","46.4","0.0","0.0","0.0","0.0",
1977TI,"9.2","11.8","59.9","11.2","14.2","13.2","65.9","14.7","48.2","50.4","251.1","50.8","17.8","15.4","86.5","11.8","30.6","42.9","272.6","84.1","5.8","7.4","37.2","12.8","24.1","22.8","131.3","38.2","17.8","23.5","151.1","42.5","168.1","200.4","1077.2","223.3","11.6","12.8","80.9","17.6","14.4","16.4","88.2","23.9","34.5","37.5","176.3","30.8","15.2","19.7","121.3","31.6","18.4","19.4","107.4","24.7","20.0","18.1","98.3","26.6","24.9","23.6","150.7","27.5","29.5","40.3","267.4","70.5","5.6","7.5","44.2","12.8","17.1","21.1","122.8","33.6","29.6","23.3","142.1","37.9","4.6","5.5","33.7","11.2","23.5","30.4","175.2","32.8","12.0","12.7","84.8","21.3","7.3","9.3","46.6","17.8","30.2","26.0","147.1","25.2","15.9","22.7","133.2","45.1","12.8","12.1","84.3","28.0","12.4","16.5","131.2","55.6","150.9","202.9","1065.4","223.7","36.6","44.0","194.3","39.9","36.7","31.5","196.7","45.7","14.8","22.5","115.1","29.4","11.7","17.2","114.2","75.8","5.0","7.7","38.0","9.4","24.0","26.8","143.5","27.0","35.3","43.0","247.4","73.5","9.7","12.1","61.6","13.3","9.5","11.9","73.9","18.9","20.4","26.7","143.0","31.6","4.0","5.0","35.5","12.3","52.3","58.0","266.0","62.5","2.6","2.7","24.2","6.0","17.3","21.0","113.0","33.3","4.5","5.2","33.8","10.6","18.7","18.8","98.3","24.8","77.4","87.6","446.6","100.3","20.5","23.4","90.2","20.4","38.7","50.7","277.6","57.3","6.4","8.7","60.1","21.5","28.6","31.0","194.8","45.7","0.0","0.0","0.0","0.0",


Solution 1:[1]

Here's a one-liner that does not require specifying the column name

df.drop(df.columns[len(df.columns)-1], axis=1, inplace=True)

Solution 2:[2]

Another method to delete last column in DataFrame df:

df = df.iloc[:, :-1]

Solution 3:[3]

Improve from @conner.xyz answer above:

df.drop(df.columns[[-1,]], axis=1, inplace=True)

If you want to delete the last two columns, replace [-1,] by [-1, -2].

Solution 4:[4]

Another way to remove the last column:

df = df[df.columns[:-1]]

Solution 5:[5]

After importing the data you could drop the last column whatever it is with:

employment = employment.drop(columns=employment.columns[-1])

Solution 6:[6]

As with all index based operations in Python, you can use -1 to start from the end.

df.drop(df.columns[-1], axis=1, inplace=True)

Solution 7:[7]

Just to complete the accepted answer, if you have one dataframe with only two columns, and these two columns have the same name, be aware. First you need to rename one column and then drop the desirable column.

*Edited after comment below

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 conner.xyz
Solution 2
Solution 3 Nelson Dinh
Solution 4
Solution 5 william_grisaitis
Solution 6 Bhushan
Solution 7