'How to create a custom diverging colormap in matplotlib?
I want to create a colormap similar to "RdBu" in matplotlib.

I want to make the colormap in this sequence light blue->dark blue-> black(center)->dark red->light red. Something like this.

So it is similar to "RdBu" but white changes to black & dark colors interchanged with light colors. So it is just inverting the "RdBu" colors. I don't know how to do it.
Solution 1:[1]
I made a simple tool that helps to create colormaps and generates the required code:
https://eltos.github.io/gradient/#4C71FF-0025B3-000000-C7030D-FC4A53
-->And the code you get from the download button:
#!/usr/bin/env python
from matplotlib.colors import LinearSegmentedColormap
my_gradient = LinearSegmentedColormap.from_list('my_gradient', (
# Edit this gradient at https://eltos.github.io/gradient/#4C71FF-0025B3-000000-C7030D-FC4A53
(0.000, (0.298, 0.443, 1.000)),
(0.250, (0.000, 0.145, 0.702)),
(0.500, (0.000, 0.000, 0.000)),
(0.750, (0.780, 0.012, 0.051)),
(1.000, (0.988, 0.290, 0.325))))
if __name__ == '__main__':
import numpy as np
from matplotlib import pyplot as plt
plt.imshow([np.arange(1000)], aspect="auto", cmap=my_gradient)
plt.show()
Solution 2:[2]
I wanted to create diverging colormaps by simply combining existing ones.
Here's the code:
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import colors
from typing import List, Tuple
def get_hex_col(cmap) -> List[str]:
"""Return list of hex colors for cmap"""
return [colors.rgb2hex(cmap(i)) for i in range(cmap.N)]
def get_cmap_list(
cmap_name: str, length_n: int) -> [str]:
"""Create a classified colormap of length N
"""
cmap = plt.cm.get_cmap(cmap_name, length_n)
cmap_list = get_hex_col(cmap)
return cmap_list
def get_diverging_colormap(
cmap_diverging:Tuple[str,str], color_count: int = k_classes):
"""Create a diverging colormap from two existing with k classes"""
div_cmaps: List[List[str]] = []
for cmap_name in cmap_diverging:
cmap_list = get_cmap_list(
cmap_name, length_n=color_count)
div_cmaps.append(cmap_list)
div_cmaps[1] = list(reversed(div_cmaps[1]))
cmap_nodata_list = div_cmaps[1] + div_cmaps[0]
return colors.ListedColormap(cmap_nodata_list)
# apply
cmaps_diverging: Tuple[str] = ("OrRd", "Purples")
cmap = get_diverging_colormap(cmaps_diverging)
# visualize
def display_hex_colors(hex_colors: List[str]):
"""Visualize a list of hex colors using pandas"""
df = pd.DataFrame(hex_colors).T
df.columns = hex_colors
df.iloc[0,0:len(hex_colors)] = ""
display(df.style.apply(lambda x: apply_formatting(x, hex_colors)))
display_hex_colors(cmap.colors)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | eltos |
| Solution 2 | Alex |

