'How to add multiple columns to pandas dataframe in one assignment?

I'm new to pandas and trying to figure out how to add multiple columns to pandas simultaneously. Any help here is appreciated. Ideally I would like to do this in one step rather than multiple repeated steps...

import pandas as pd

df = {'col_1': [0, 1, 2, 3],
        'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)

df[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs',3]  #thought this would work here...


Solution 1:[1]

You could use assign with a dict of column names and values.

In [1069]: df.assign(**{'col_new_1': np.nan, 'col2_new_2': 'dogs', 'col3_new_3': 3})
Out[1069]:
   col_1  col_2 col2_new_2  col3_new_3  col_new_1
0      0      4       dogs           3        NaN
1      1      5       dogs           3        NaN
2      2      6       dogs           3        NaN
3      3      7       dogs           3        NaN

Solution 2:[2]

With the use of concat:

In [128]: df
Out[128]: 
   col_1  col_2
0      0      4
1      1      5
2      2      6
3      3      7

In [129]: pd.concat([df, pd.DataFrame(columns = [ 'column_new_1', 'column_new_2','column_new_3'])])
Out[129]: 
   col_1  col_2 column_new_1 column_new_2 column_new_3
0    0.0    4.0          NaN          NaN          NaN
1    1.0    5.0          NaN          NaN          NaN
2    2.0    6.0          NaN          NaN          NaN
3    3.0    7.0          NaN          NaN          NaN

Not very sure of what you wanted to do with [np.nan, 'dogs',3]. Maybe now set them as default values?

In [142]: df1 = pd.concat([df, pd.DataFrame(columns = [ 'column_new_1', 'column_new_2','column_new_3'])])
In [143]: df1[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs', 3]

In [144]: df1
Out[144]: 
   col_1  col_2  column_new_1 column_new_2  column_new_3
0    0.0    4.0           NaN         dogs             3
1    1.0    5.0           NaN         dogs             3
2    2.0    6.0           NaN         dogs             3
3    3.0    7.0           NaN         dogs             3

Solution 3:[3]

use of list comprehension, pd.DataFrame and pd.concat

pd.concat(
    [
        df,
        pd.DataFrame(
            [[np.nan, 'dogs', 3] for _ in range(df.shape[0])],
            df.index, ['column_new_1', 'column_new_2','column_new_3']
        )
    ], axis=1)

enter image description here

Solution 4:[4]

if adding a lot of missing columns (a, b, c ,....) with the same value, here 0, i did this:

    new_cols = ["a", "b", "c" ] 
    df[new_cols] = pd.DataFrame([[0] * len(new_cols)], index=df.index)

It's based on the second variant of the accepted answer.

Solution 5:[5]

Just want to point out that option2 in @Matthias Fripp's answer

(2) I wouldn't necessarily expect DataFrame to work this way, but it does

df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)

is already documented in pandas' own documentation http://pandas.pydata.org/pandas-docs/stable/indexing.html#basics

You can pass a list of columns to [] to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner. You may find this useful for applying a transform (in-place) to a subset of the columns.

Solution 6:[6]

Dictionary mapping with .assign():

This is the most readable and dynamic way to assign new column(s) with value(s) when working with many of them.

import pandas as pd
import numpy as np

new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [np.nan, "dogs", 3]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)

If you're just trying to initialize the new column values to be empty as you either don't know what the values are going to be or you have many new columns.

import pandas as pd
import numpy as np

new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [None for item in new_cols]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)

Solution 7:[7]

If you just want to add empty new columns, reindex will do the job

df
   col_1  col_2
0      0      4
1      1      5
2      2      6
3      3      7

df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
   col_1  col_2  column_new_1  column_new_2  column_new_3
0      0      4           NaN           NaN           NaN
1      1      5           NaN           NaN           NaN
2      2      6           NaN           NaN           NaN
3      3      7           NaN           NaN           NaN

full code example

import numpy as np
import pandas as pd

df = {'col_1': [0, 1, 2, 3],
        'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
print('df',df, sep='\n')
print()
df=df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
print('''df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)''',df, sep='\n')

otherwise go for zeros answer with assign

Solution 8:[8]

I am not comfortable using "Index" and so on...could come up as below

df.columns
Index(['A123', 'B123'], dtype='object')

df=pd.concat([df,pd.DataFrame(columns=list('CDE'))])

df.rename(columns={
    'C':'C123',
    'D':'D123',
    'E':'E123'
},inplace=True)


df.columns
Index(['A123', 'B123', 'C123', 'D123', 'E123'], dtype='object')

Solution 9:[9]

You could instantiate the values from a dictionary if you wanted different values for each column & you don't mind making a dictionary on the line before.

>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame({
  'col_1': [0, 1, 2, 3], 
  'col_2': [4, 5, 6, 7]
})
>>> df
   col_1  col_2
0      0      4
1      1      5
2      2      6
3      3      7
>>> cols = {
  'column_new_1':np.nan,
  'column_new_2':'dogs',
  'column_new_3': 3
}
>>> df[list(cols)] = pd.DataFrame(data={k:[v]*len(df) for k,v in cols.items()})
>>> df
   col_1  col_2  column_new_1 column_new_2  column_new_3
0      0      4           NaN         dogs             3
1      1      5           NaN         dogs             3
2      2      6           NaN         dogs             3
3      3      7           NaN         dogs             3

Not necessarily better than the accepted answer, but it's another approach not yet listed.

Solution 10:[10]

import pandas as pd
df = pd.DataFrame({
 'col_1': [0, 1, 2, 3], 
 'col_2': [4, 5, 6, 7]
 })
df['col_3'],  df['col_4'] =  [df.col_1]*2

>> df
col_1   col_2   col_3   col_4
0      4       0       0
1      5       1       1
2      6       2       2
3      7       3       3

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 Zero
Solution 2 Nehal J Wani
Solution 3
Solution 4 A. Rabus
Solution 5 Community
Solution 6
Solution 7 Markus Dutschke
Solution 8 Nensi Kasundra
Solution 9 spen.smith
Solution 10 miriam mazzeo