'How do I show different yaxis value in a subplot?

I want to show different ranges in the first row and different ranges in the second row? For instance first row can show up to 50 and second can show up to 100?

from plotly.subplots import make_subplots
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd

# set seed
np.random.seed(41)

#create three different normally distributed datasets
score_array_A = np.random.normal(size = 100, loc = 15, scale=5)
score_array_B = np.random.normal(size = 200, loc = 50, scale=10)
score_array_C = np.random.normal(size = 300, loc = 70, scale=15)

#turn normal arrays into dataframes
#score_data['T(s)']
score_df_A = pd.DataFrame({'T(s)':score_array_A,'D':'2'})
score_df_B = pd.DataFrame({'T(s)':score_array_B,'D':'3'})
score_df_C = pd.DataFrame({'T(s)':score_array_C,'D':'4'})

#concat dataframes together
score_data = pd.concat([score_df_A,score_df_B,score_df_C])

score_data = score_data.assign(Req = np.where(score_data['T(s)']%5 > 1, "1", "5"))

#to plot subplots
px.box(data_frame = score_data
             ,y = 'T(s)'
             ,facet_col = 'D'
             , facet_row = 'Req'
             ,facet_col_wrap = 0, 
               template='simple_white',
               width=600, 
               height=300
             )


Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source