'How can I select rows from table A whose id matches those from table B, but whose (non id) values are different?
Consider these two data.tables, foo and bar.
foo <- data.table(id = c(1,2,3,4), f1 = c("a", "b", "c", "d"), f2 = c("a", "b", "c", "d"))
bar <- data.table(id = c(1,2,3,4), f1 = c("a", "a", "c", "d"), f2 = c("a", "b", "c", "e"))
foo
id f1 f2
1: 1 a a
2: 2 b b
3: 3 c c
4: 4 d d
bar
id f1 f2
1: 1 a a
2: 2 a b
3: 3 c c
4: 4 d e
I know that foo and bar have a 1-1 relationship.
I would like to select rows from bar such that the corresponding row in foo has different values. For example,
- id 1: the values of
f1andf2are the same infooand bar, so exclude this one - id 2: the value of
f1has changed! include this in the result - id 3: the values of
f1andf2are the same infooand bar, so exclude this one - id 4: the value of
f2has changed! include this in the result
Expected Result
bar[c(2,4)]
id f1 f2
1: 2 a b
2: 4 d e
What I tried
I thought a non-equi join would work great here.. Unfortunately, it seems the "not equals" operator isn't supported.?
foo[!bar, on = c("id=id", "f1!=f1", "f2!=f2")]
# Invalid operators !=,!=. Only allowed operators are ==<=<>=>.
foo[!bar, on = c("id=id", "f1<>f1", "f2<>f2")]
# Found more than one operator in one 'on' statement: f1<>f1. Please specify a single operator.
Solution 1:[1]
With data.table:
bar[foo,.SD[i.f1!=x.f1|i.f2!=x.f2],on="id"]
id f1 f2
<num> <char> <char>
1: 2 a b
2: 4 d e
Solution 2:[2]
I think this is best (cleanest, but perhaps not fastest?):
bar[!foo, on=.(id,f1,f2)]
id f1 f2
<num> <char> <char>
1: 2 a b
2: 4 d e
Solution 3:[3]
Benchmarking on a larger dataset with a few different data.table options. The mapply option works only if all.equal(foo$id, bar$id) (depends on exactly what is meant by "1-1 relationship").
library(data.table)
set.seed(123)
foo <- data.table(id = 1:1e5, f1 = 1:1e5, f2 = 1:1e5)
mix <- sample(1e5, 5e4)
bar <- copy(foo)[mix[1:25e3], f1 := 0L][mix[25001:5e4], f2 := 0L]
head(fsetdiff(bar, foo))
#> id f1 f2
#> 1: 5 0 5
#> 2: 6 6 0
#> 3: 7 0 7
#> 4: 8 0 8
#> 5: 10 0 10
#> 6: 12 12 0
microbenchmark::microbenchmark(join = bar[foo,.SD[i.f1!=x.f1|i.f2!=x.f2],on="id"],
antijoin = bar[!foo, on=.(id,f1,f2)],
fsetdiff = fsetdiff(bar, foo),
duplicated = bar[(!duplicated(rbindlist(list(bar, foo)), fromLast = TRUE))[1:nrow(bar)]],
mapply = bar[rowSums(mapply(function(i) foo[[i]] != bar[[i]], 2:length(bar))) > 0,],
check = "equal")
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> join 12.2306 14.07125 15.133795 14.76330 15.96645 22.4534 100
#> antijoin 16.2002 17.60420 19.234747 18.30230 19.44395 59.1581 100
#> fsetdiff 20.1408 21.76150 23.080961 23.03760 23.73860 30.9594 100
#> duplicated 17.8954 20.12690 21.673165 21.66795 22.79185 27.3250 100
#> mapply 3.2440 3.56480 4.346703 3.87415 4.63610 10.2100 100
Solution 4:[4]
As other than data.table solution are also welcomed. Here is a tidyverse solution:
library(dplyr)
library(tidyr)
left_join(foo, bar, by="id") %>%
group_by(id) %>%
mutate(identical = n_distinct(unlist(cur_data())) == 1) %>%
filter(identical == FALSE) %>%
select(id, f1=f1.y, f2=f2.y)
Groups: id [2]
id f1 f2
<dbl> <chr> <chr>
1 2 a b
2 4 d e
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | Waldi |
| Solution 2 | |
| Solution 3 | |
| Solution 4 | TarJae |
