'How can i insert three columns inside 'Percentile' column
I want to add three columns inside that percentile columns but not sure how to do it , any suggestions ?
and this is df=
@status_message_decorator("Refreshing statistics...")
def refresh_statistics(self, force=False):
if force or self.settings.refresh_statistics.value:
df = self.df
d = {"Type": df.dtypes.astype(str),
"Count": df.count(),
"N Unique": nunique(df),
"Mean": df.mean(numeric_only=True),
"StdDev": df.std(numeric_only=True),
"Min": df.min(numeric_only=True),
"Max": df.max(numeric_only=True),
"Percentile (25%)": df.mean(numeric_only=True) * 25 / 100,
"Percentile (50%)": df.mean(numeric_only=True) * 50 / 100,
"Percentile (75%)": df.mean(numeric_only=True) * 75 / 100,
"kyrtosis": df.max(numeric_only=True),
"skewness": (3 * (df.mean(numeric_only=True) - df.mean(numeric_only=True) * 50 / 100)) / df.std(
numeric_only=True),
}
d['Max'] = {'col4': [1, 2], 'col5': [2, 3], 'col6': [4, 5]}
self.column_statistics = pd.DataFrame(data=d, index=df.columns)
and this df :
[812 rows x 102 columns]
Type Count N Unique ... Percentile (75%) kyrtosis skewness
0 float64 812 698 ... 0.008219 6.514846 0.017131
1 float64 812 604 ... 0.034848 8.874518 0.064056
2 float64 812 71 ... 0.001846 19.101014 0.003592
3 float64 812 733 ... 0.030433 17.726106 0.050622
4 float64 812 699 ... -0.037690 4.795342 -0.076286
Solution 1:[1]
For example we have a data frame 'd':
d = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data=d)
d
gives : {'col1': [1, 2], 'col2': [3, 4]}
then we want to make it nested a DF.
We can do that by passing that particular column a set of required values,in your case 3 :
for example :
d['col2']= {'col4':[1,2],'col5':[2,3],'col6':[4,5]}
print(d)
gives :
{'col1': [1, 2], 'col2': {'col4': [1, 2], 'col5': [2, 3], 'col6': [4, 5]}}
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | EAZY_EZ_HE |
