'GAN generator loss is 0 from the start

I need data augmentation for network traffic and I'm following an article in which the structure of the discriminator and generator are both specified. My input data is a collection of pcap files, each having 10 packets with 250 bytes. They are then transformed into a (10, 250) array and all the bytes are cast into float64.

def Byte_p_to_float(byte_p):
    float_b = []
    for byte in byte_p:
        float_b.append(float(str(byte)))
    return float_b

Xtrain = []
a = []
for i in range(len(Dataset)):
    for p in range(10):
        a.append(Byte_p_to_float(raw(Dataset[i][p]))) # packets transform to byte, and the float64
    Xtrain.append(a)
    a = []
Xtrain = np.asarray(Xtrain)
Xtrain = Xtrain / 127.5 - 1.0 # normalizing.

I then go on training the model but the generator loss is always 0 from start!

batch_size = 128
interval = 5
iterations = 2000

real = [] # a list of all 1s for true data label
for i in range (batch_size):
    real.append(1)
    
fake = [] # a list of all 1s for fake data label
for i in range (batch_size):
    fake.append(0)


for iteration in range(iterations):

    ids = np.random.randint(0,Xtrain.shape[0],batch_size)
    flows = Xtrain[ids]
    
    z = np.random.normal(0, 1, (batch_size, 100)) # generating gaussian noise vector!
    gen_flows = generator_v.predict(z) 
    gen_flows = ((gen_flows - np.amin(gen_flows))/(np.amax(gen_flows) - np.amin(gen_flows))) * 2 - 1 # normalizing. (-1,+1)
    
    # gen_flows returns float32 and here i transform to float 64. not sure if its necessary
    t = np.array([])
    for i in range(batch_size):
        t = np.append(t ,[np.float64(gen_flows[i])])
    t = t.reshape(batch_size, 2500)
    gen_flows = []
    gen_flows = t
    
    nreal = np.asarray(real)
    nfake = np.asarray(fake)
    nflows = flows.reshape(batch_size, 2500) # this way we match the article.
    dloss_real = discriminator_v.train_on_batch(nflows, nreal) # training the discriminator on real data
        
    dloss_fake = discriminator_v.train_on_batch(gen_flows, nfake) # training the discriminator on fake data

    dloss, accuracy = 0.5 * np.add(dloss_real,dloss_fake)

    z = np.random.normal(0, 1, (batch_size, 100)) # generating gaussian noise vector for GAN
    gloss = gan_v.train_on_batch(z, nreal)

    if (iteration + 1) % interval == 0:
        losses.append((dloss, gloss))
        accuracies.append(100.0 * accuracy)
        iteration_checks.append(iteration + 1)
        print("%d [D loss: %f , acc: %.2f] [G loss: %f]" % (iteration+1,dloss,100.0*accuracy,gloss))
        

[the model description in the article is here][1]

and finally here is my model:

losses=[]
accuracies=[]
iteration_checks=[]
zdim = np.random.normal(0,1,100) # 100 dimentional gaussian noise vector

def build_generator(gause_len):
    model = Sequential()

    model.add(Input(shape=(gause_len,)))
    model.add(Dense(256))
    model.add(LeakyReLU())
    model.add(BatchNormalization())

    model.add(Dense(512))
    model.add(LeakyReLU())
    model.add(BatchNormalization())

    model.add(Dense(1024))
    model.add(LeakyReLU())
    model.add(BatchNormalization())

    model.add(Dense(2500))
    model.add(LeakyReLU(2500))
    #model.add(reshape(img_shape))
    return model
def build_discriminator():
    model = Sequential()
    
    
    model.add(Input(shape=(2500))) #input shape
    model.add(Dense(2500))
    #model.add( Dense(2500, input_shape=img_shape) )
    model.add(LeakyReLU())
    model.add(Dropout(0.5))
    

    model.add(Dense(1024, ))
    model.add(LeakyReLU())
    model.add(Dropout(0.5))

    model.add(Dense(512, ))
    model.add(LeakyReLU())
    model.add(Dropout(0.5))

    model.add(Dense(256, ))
    model.add(LeakyReLU())
    model.add(Dropout(0.5))

    model.add(Dense(1, ))
    return model

def build_gan(generator, discriminator):
    model = Sequential()
    model.add(generator)
    model.add(discriminator)
    return model

# used for training the discriminator netowrk
discriminator_v = build_discriminator()
discriminator_v.compile(loss='binary_crossentropy', optimizer=Adam(), metrics=['accuracy'])

# used for training the Generator netowrk
generator_v = build_generator(len(zdim))
discriminator_v.trainable = False

# used for training the GAN netowrk
gan_v = build_gan(generator_v, discriminator_v)
gan_v.compile(loss='binary_crossentropy', optimizer=Adam())

AI isn't my area of expertise and all this is part of a much larger project, so the error may be obvious. any help will be much appreciated. [1]: https://i.stack.imgur.com/DqcjR.png



Solution 1:[1]

There is something wrong with the normalization of the output of the generator. In your code, gen_flows = generator_v.predict(z) is normalized between -1 and 1, but this is not the case for the output of the generator in the gan_v model. Also, the last layer of the generator model is a leakyrelu, which might be problematic. I suggest removing this last layer from the generator. If you need to normalize the output, you can put a tanh activation to the last Dense layer.

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1