'Distinguish NaN value and string 'NaN' in Pandas value_counts function
in python I have a list of [None, None, 'NaN', 'NaN', None]
When i apply value_counts function on the pandas series of this list, the result is:
NaN 3
NaN 2
which I cannot distinguish which is which.
Is there another method I can distinguish the string 'NaN' literally and value NaN?
Solution 1:[1]
How you visualize the output and what you exactly expect is unclear, but you could add a suffix to the string NaN:
(pd.Series([None, None, 'NaN', 'NaN', None])
.add(' (str)')
.value_counts(dropna=False)
)
output:
NaN 3
NaN (str) 2
dtype: int64
Or fillna with a custom string (which makes it work in case you have other types):
(pd.Series([None, None, 'NaN', 'NaN', None])
.fillna('literal NA')
.value_counts(dropna=False)
)
output:
literal NA 3
NaN 2
dtype: int64
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 |
