'.describe() function in python with missing counts
I created a nested loop that runs through several items in a multidimensional array. Once the loop has ran through the datasets, I organize the results using the Group.By function and I get some statistics using .describe(). The issue I have is that once I run the statistics, the count is shown as 26 items per group and I know already that there are groups with more or less than 26 items. Could this be an issue with the nested loop?
for i in range (0,253):
mos0=swarm_data_array[i]
mos0_id= mos0[0][0]
mos0_time=mos0[:,1]
mos0_x_pos=mos0[:,2]
mos0_y_pos=mos0[:,3]
mos0_z_pos=mos0[:,4]
mos0_speed=mos0[:,6]
for j in range(len(mos0_id)):
mos0_ids.append(mos0_id)
for k in range(len(mos0_time)):
first_mov_time=mos0_time[k]
last_mov_time=mos0_time[k-1]
first_movement = dt.datetime.strptime(first_mov_time, '%Y-%m-%d %H:%M:%S.%f')
last_movement = dt.datetime.strptime(last_mov_time, '%Y-%m-%d %H:%M:%S.%f')
x = first_movement - last_movement
total_seconds = x.total_seconds()
mos0_dt.append(total_seconds)
for l in range(len(mos0_x_pos)):
first_mov_pos=mos0_x_pos[l]
last_mov_pos=mos0_x_pos[l-1]
x = first_mov_pos - last_mov_pos
mos0_x_dpos.append(x)
for m in range(len(mos0_y_pos)):
first_mov_pos=mos0_y_pos[m]
last_mov_pos=mos0_y_pos[m-1]
x = first_mov_pos - last_mov_pos
mos0_y_dpos.append(x)
for n in range(len(mos0_z_pos)):
first_mov_pos=mos0_z_pos[n]
last_mov_pos=mos0_z_pos[n-1]
x = first_mov_pos - last_mov_pos
mos0_z_dpos.append(x)
mos0_ids
mos0_dt
mos0_x_dpos
mos0_y_dpos
mos0_z_dpos
time_pos=list(zip(mos0_ids, mos0_dt, mos0_x_dpos, mos0_y_dpos, mos0_z_dpos))
time_pos=pd.DataFrame(time_pos,columns=['mos_id','dtime', 'x_position', 'y_position','z_position']) # transform into a dataframe
time_pos['x_velocity'] = time_pos['x_position']/time_pos['dtime']
time_pos['y_velocity'] = time_pos['y_position']/time_pos['dtime']
time_pos['z_velocity'] = time_pos['z_position']/time_pos['dtime']
time_pos['x_acceleration'] = time_pos['x_velocity']/time_pos['dtime']
time_pos['y_acceleration'] = time_pos['y_velocity']/time_pos['dtime']
time_pos['z_acceleration'] = time_pos['z_velocity']/time_pos['dtime']
time_pos=time_pos.groupby('mos_id')
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
