'Convert numpy array with indices to a pandas dataframe
I have a numpy array which I want to print with python ggplot's tile. For that I need to have a DataFrame with the columns x, y, value. How can I transform the numpy array efficiently into such a DataFrame. Please consider, that the form of the data I want is in a sparse style, but I want a regular DataFrame. I tried using scipy sparse data structures like in Convert sparse matrix (csc_matrix) to pandas dataframe, but conversions were too slow and memory hungry: My memory was used up.
To clarify what I want:
I start out with a numpy array like
array([[ 1, 3, 7],
[ 4, 9, 8]])
and I would like to end up with the DataFrame
x y value
0 0 0 1
1 0 1 3
2 0 2 7
3 1 0 4
4 1 1 9
5 1 2 8
Solution 1:[1]
arr = np.array([[1, 3, 7],
[4, 9, 8]])
df = pd.DataFrame(np.hstack((np.indices(arr.shape).reshape(2, arr.size).T,\
arr.reshape(-1, 1))), columns=['x', 'y', 'value'])
print(df)
x y value
0 0 0 1
1 0 1 3
2 0 2 7
3 1 0 4
4 1 1 9
5 1 2 8
You might also consider using the function employed in this answer, as a speedup to np.indices in the solution above:
def indices_merged_arr(arr):
m,n = arr.shape
I,J = np.ogrid[:m,:n]
out = np.empty((m,n,3), dtype=arr.dtype)
out[...,0] = I
out[...,1] = J
out[...,2] = arr
out.shape = (-1,3)
return out
array = np.array([[ 1, 3, 7],
[ 4, 9, 8]])
df = pd.DataFrame(indices_merged_arr(array), columns=['x', 'y', 'value'])
print(df)
x y value
0 0 0 1
1 0 1 3
2 0 2 7
3 1 0 4
4 1 1 9
5 1 2 8
Performance
arr = np.random.randn(1000, 1000)
%timeit df = pd.DataFrame(np.hstack((np.indices(arr.shape).reshape(2, arr.size).T,\
arr.reshape(-1, 1))), columns=['x', 'y', 'value'])
100 loops, best of 3: 15.3 ms per loop
%timeit pd.DataFrame(indices_merged_arr(array), columns=['x', 'y', 'value'])
1000 loops, best of 3: 229 µs per loop
Solution 2:[2]
You can try this solution by using np.ndenumerate:
arr = np.array([[1, 3, 7],
[4, 9, 8]])
df = pd.DataFrame(np.ndenumerate(arr), columns=["coord","val"])
df[["x","y"]] = df["coord"].tolist()
df.drop('coord', 1, inplace=True)
df = df[["x","y","val"]]
output
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | |
| Solution 2 | Phoenix |

