'completing missing data on period imput value based on next month in python jupyter notebook
I am working on a DF containing sales by category between 2021 and 2023. I got 3 category and the 1 contributing a lot on the revenu. Problem is, In the month of Sept 2021, I have no sales for the category 1. I have no information on stock, i think it is probably an error in the data collection. I would like to replace those missing data using the same value as the next month, anyone has any idea how to do this on python/ jupyter notebook?
Thanks a lot for your attention Nice day to all missing data evolution graph
Code :
df_months = cat1.groupby(pd.Grouper(key='date', freq='M')).sum().reset_index()
df_months['sale_ke'] = df_months.price / 1000
df_months = df_months[['date', 'sale_ke']]
print(df_months)
print("----")
print('Le CA moyen mensuel est de', round(df_months.sale_ke.mean()), 'K euros')
print("----")
print("Le mois d'octobre 2021 est le seul dont le CA est bien en dessous de la moyenne")
date sale_ke
0 2021-03-31 186.97
1 2021-04-30 156.14
2 2021-05-31 165.89
3 2021-06-30 189.16
4 2021-07-31 188.52
5 2021-08-31 162.99
6 2021-09-30 190.61
7 2021-10-31 33.76
8 2021-11-30 252.91
9 2021-12-31 251.03
10 2022-01-31 256.27
11 2022-02-28 213.12
12 2022-03-31 206.49
13 2022-04-30 195.26
14 2022-05-31 205.53
15 2022-06-30 201.91
16 2022-07-31 193.97
17 2022-08-31 211.36
18 2022-09-30 195.38
19 2022-10-31 199.61
20 2022-11-30 200.43
21 2022-12-31 205.95
22 2023-01-31 210.10
23 2023-02-28 180.35
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
