'Applying a flip function to image data generator causes memory error
I've been looking at this tutorial for implementing time test augmentation to my model. Since I'm using image generators I tried doing something like this:
tta_datagen = ImageDataGenerator()
tta_generator = tta_datagen.flow_from_dataframe(
dataframe = X_test_bal,
x_col = 'uuid',
y_col = 'group',
target_size = (260, 260),
directory = DATA_FOLDERS_PATH,
class_mode = 'categorical',
batch_size = 10,
shuffle = False
)
def flip_lr(images):
return np.flip(images, axis = 2)
def shift(images, shift, axis):
return np.roll(images, shift, axis = axis)
def rotate(images, angle):
return sp.ndimage.rotate(images, angle, axes(1, 2), reshape = False, mode='nearest')
y_pred_f = train_model.predict(flip_lr(tta_generator))
This always causes ram memory error (I'm running this on kaggle with 13GB ram). Is there a way to reduce the memory or am I doing something wrong?
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
