'Why is O(2ⁿ) less complex than O(1)?
https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/
- Exponentials have greater complexity than polynomials as long as the coefficients are positive multiples of n
O(2ⁿ) is more complex than O(n⁹⁹), but O(2ⁿ) is actually less complex than O(1). We generally take 2 as base for exponentials and logarithms because things tends to be binary in Computer Science, but exponents can be changed by changing the coefficients. If not specified, the base for logarithms is assumed to be 2.
I thought O(1) is the simplest in complexity. Could anyone help me explain why O(2ⁿ) is less complex than O(1) ?
Solution 1:[1]
Errata. The author made an obvious mistake and you caught it. It's not the only mistake in the article. For example, I would expect O(n*log(n)) to be the more appropriate complexity for sorting algorithms than the one they claim (quoted below). Otherwise, you'd be able to sort a set without even seeing all of the data.
"As complexity is often related to divide and conquer algorithms, O(log(n)) is generally a good complexity you can reach for sorting algorithms."
It might be worthwhile to try to contact the author and give him a heads up so he can correct it and avoid confusing anyone else with misinformation.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | phatfingers |
