'Training data in sentiment analysis
I'm doing sentiment analysis of tweets related to recent acquisition of Twitter by Elon Musk. I have a corpus of 10 000 tweets and I'd like to use machine learning methods using models like SVM and Linear Regression. My question is, when I want to train the models, do I have to manually tag big portion of those 10 000 collected tweets with either positive or negative class to train the model correctly or can I use some other dataset of tweets not relating to this topic that's already tagged to train the model for sentiment analysis? Thank you for your answers!
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
