'stata: esttab adding rows for mixed effects analysis

I am using melogit to run a mixed effects. The output after the model looks fine, but when I try to report it with esttab it adds a bunch of other rows that just have _skip(10) as the value. Can someone explain why these come up, if it's bad that they are skipped, and if I can suppress them? Thanks!

melogit outcome i.treatment##i.time [pweight=pweight] || survey_id:

Fitting fixed-effects model:

Iteration 0:   log likelihood = -166.88948  
Iteration 1:   log likelihood =  -166.2013  
Iteration 2:   log likelihood = -166.19374  
Iteration 3:   log likelihood = -166.19374  

Refining starting values:

Grid node 0:   log likelihood = -158.29412

Fitting full model:

Iteration 0:   log pseudolikelihood = -158.29412  
Iteration 1:   log pseudolikelihood =  -155.0005  
Iteration 2:   log pseudolikelihood = -154.52065  
Iteration 3:   log pseudolikelihood = -154.49826  
Iteration 4:   log pseudolikelihood = -154.49821  
Iteration 5:   log pseudolikelihood = -154.49821  

Mixed-effects logistic regression               Number of obs     =        293
Group variable:       survey_id                 Number of groups  =        223

                                                Obs per group:
                                                              min =          1
                                                              avg =        1.3
                                                              max =          2

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(5)      =      14.15
Log pseudolikelihood = -154.49821               Prob > chi2       =     0.0147
                              (Std. Err. adjusted for 223 clusters in survey_id)
--------------------------------------------------------------------------------
               |               Robust
       outcome |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
---------------+----------------------------------------------------------------
     treatment |
            1  |  -.8677773     .88814    -0.98   0.329      -2.6085     .872945
            2  |   2.186636   .9361024     2.34   0.019     .3519094    4.021363
               |
        2.time |  -3.055517   1.049473    -2.91   0.004    -5.112445   -.9985883
               |
treatment#time |
          1 2  |   2.977814   1.427803     2.09   0.037     .1793714    5.776256
          2 2  |   1.633108   1.320658     1.24   0.216     -.955334    4.221551
               |
         _cons |  -.7764148   .3043046    -2.55   0.011    -1.372841   -.1799886
---------------+----------------------------------------------------------------
survey_id      |
     var(_cons)|   4.327927   1.877214                      1.849592    10.12707
--------------------------------------------------------------------------------

. estat ic

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |        Obs  ll(null)  ll(model)      df         AIC        BIC
-------------+---------------------------------------------------------------
           . |        293         .  -154.4982       7    322.9964   348.7576
-----------------------------------------------------------------------------
               Note: N=Obs used in calculating BIC; see [R] BIC note.

. estimates store test

. esttab test, star(* 0.1 ** 0.05 *** 0.01) constant b(a2) compress ci aic bic noabbrev eform

-----------------------
                 (1)   
             outcome   
-----------------------
outcome                
0b.treatment         .   
           _skip(10)   

1.treatment      0.42   
           [0.074,2.39]   

2.treatment      8.91** 
           [1.42,55.8]   

1b.time            .   
           _skip(10)   

2.time         0.047***
           [0.0060,0.37]   

0b.treatment#1b.time         .   
           _skip(10)   

0b.treatment#2o.time         .   
           _skip(10)   

1o.treatment#1b.time         .   
           _skip(10)   

1.treatment#2.time      19.6** 
           [1.20,322.5]   

2o.treatment#1b.time         .   
           _skip(10)   

2.treatment#2.time      5.12   
           [0.38,68.1]   

_cons           0.46** 
           [0.25,0.84]   
-----------------------
/                      
var(_cons[survey_id])      75.8** 
           [1.91,3002.5]   
-----------------------
N                293   
AIC            323.0   
BIC            348.8   
-----------------------
Exponentiated coefficients; 95% confidence intervals in brackets
* p<0.1, ** p<0.05, *** p<0.01


Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source