'Sparse Matrix size vs Regular Matrix size in r
My regular matrix has object size 416 bytes, and when I use as(, "sparseMatrix") to turn it into sparse matrix, then the size for this sparse matrix goes up to 1720 bytes.
Is it normal? Shouldn't we expect a smaller storage size for the sparse matrix than the regular one?
Many thanks in advance!
Solution 1:[1]
matrix is one of the base data structures of R, and can be stored with very little metadata: it is a sequence of values with just a length for each dimension, and a data type.
A sparseMatrix object however contains more metadata, as you'll see with str() in the examples below. Most prominently, for each non-zero value an (x,y) position is stored in addition to the value itself. This alone will cause a threefold increase in memory use, if you're storing integers. This is only compensated when there are many zero values, as they are not stored at all.
Dense example
Compare for a matrix with no zero values:
> mat1 = matrix( sample(3*3), c(3, 3))
> smat1 <- as(mat1, "sparseMatrix")
> showMem(c('mat1', 'smat1'), bytes=T)
size bytes
mat1 264 B 264
smat1 1.7 kB 1688
> mat1
[,1] [,2] [,3]
[1,] 2 5 7
[2,] 8 6 1
[3,] 3 4 9
> str(mat1)
int [1:3, 1:3] 2 8 3 5 6 4 7 1 9
> str(smat1)
Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:9] 0 1 2 0 1 2 0 1 2
..@ p : int [1:4] 0 3 6 9
..@ Dim : int [1:2] 3 3
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ x : num [1:9] 2 8 3 5 6 4 7 1 9
..@ factors : list()
Or a larger version of such a matrix:
> mat2 = matrix( sample(1000*1000), c(1000, 1000))
> smat2 <- as(mat2, "sparseMatrix")
> showMem(c('mat2', 'smat2'), bytes=T)
size bytes
mat2 4 MB 4000216
smat2 12 MB 12005504
Sparse example
Here we create a more sparse matrix, with 6 zeroes and only 3 values. We can see that the sparseMatrix only stores the 3 values.
> mat3 = matrix( sample(3*3)%%3%%2, c(3, 3))
> smat3 <- as(mat3, "sparseMatrix")
> showMem(c('mat3', 'smat3'), bytes=T)
size bytes
mat3 344 B 344
smat3 1.6 kB 1560
> mat3
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 0 0
[3,] 1 0 1
> str(mat3)
num [1:3, 1:3] 0 0 1 1 0 0 0 0 1
> str(smat3)
Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:3] 2 0 2
..@ p : int [1:4] 0 1 2 3
..@ Dim : int [1:2] 3 3
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ x : num [1:3] 1 1 1
..@ factors : list()
And finally a case where the sparseMatrix gives the expected memory savings:
> mat4 = matrix( sample(1000*1000)%%3%%2, c(1000, 1000))
> smat4 <- as(mat4, "sparseMatrix")
> table(mat4)
mat4
0 1
666666 333334
> showMem(c('mat4', 'smat4'), bytes=T)
size bytes
mat4 8 MB 8000216
smat4 4 MB 4005512
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | Caspar V. |
