'Spark + s3 - error - java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found
I have a spark ec2 cluster where I am submitting a pyspark program from a Zeppelin notebook. I have loaded the hadoop-aws-2.7.3.jar and aws-java-sdk-1.11.179.jar and place them in the /opt/spark/jars directory of the spark instances. I get a java.lang.NoClassDefFoundError: com/amazonaws/AmazonServiceException
Why is spark not seeing the jars? Do I have to have to jars in all the slaves and specify a spark-defaults.conf for the master and slaves? Is there something that needs to be configured in zeppelin to recognize the new jar files?
I have placed jar files /opt/spark/jars on the spark master. I have created a spark-defaults.conf and added the lines
spark.hadoop.fs.s3a.access.key [ACCESS KEY]
spark.hadoop.fs.s3a.secret.key [SECRET KEY]
spark.hadoop.fs.s3a.impl org.apache.hadoop.fs.s3a.S3AFileSystem
spark.driver.extraClassPath /opt/spark/jars/hadoop-aws-2.7.3.jar:/opt/spark/jars/aws-java-sdk-1.11.179.jar
I have zeppelin interpreter sending a spark submit to the spark master.
I have also placed the jars in the /opt/spark/jars in the slaves too but did not create a spark-deafults.conf.
%spark.pyspark
#importing necessary libaries
from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import StringType
from pyspark import SQLContext
from itertools import islice
from pyspark.sql.functions import col
# add aws credentials
sc._jsc.hadoopConfiguration().set("fs.s3n.awsAccessKeyId", "[ACCESS KEY]")
sc._jsc.hadoopConfiguration().set("fs.s3n.awsSecretAccessKey", "[SECRET KEY]")
sc._jsc.hadoopConfiguration().set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
#creating the context
sqlContext = SQLContext(sc)
#reading the first csv file and store it in an RDD
rdd1= sc.textFile("s3a://filepath/baby-names.csv").map(lambda line: line.split(","))
#removing the first row as it contains the header
rdd1 = rdd1.mapPartitionsWithIndex(
lambda idx, it: islice(it, 1, None) if idx == 0 else it
)
#converting the RDD into a dataframe
df1 = rdd1.toDF(['year','name', 'percent', 'sex'])
#print the dataframe
df1.show()
Error thrown:
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 4 times, most recent failure: Lost task 0.3 in stage 1.0 (TID 7, 10.11.93.90, executor 1): java.lang.NoClassDefFoundError: com/amazonaws/AmazonServiceException
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.hadoop.conf.Configuration.getClassByNameOrNull(Configuration.java:2134)
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2099)
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2193)
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2654)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2667)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.hadoop.mapred.LineRecordReader.<init>(LineRecordReader.java:108)
at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:267)
at org.apache.spark.rdd.HadoopRDD$$anon$1.<init>(HadoopRDD.scala:266)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:224)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:95)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ClassNotFoundException: com.amazonaws.AmazonServiceException
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
... 34 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:153)
at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.NoClassDefFoundError: com/amazonaws/AmazonServiceException
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.hadoop.conf.Configuration.getClassByNameOrNull(Configuration.java:2134)
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2099)
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2193)
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2654)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2667)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.hadoop.mapred.LineRecordReader.<init>(LineRecordReader.java:108)
at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:267)
at org.apache.spark.rdd.HadoopRDD$$anon$1.<init>(HadoopRDD.scala:266)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:224)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:95)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: java.lang.ClassNotFoundException: com.amazonaws.AmazonServiceException
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
... 34 more
Solution 1:[1]
I was able to address the above to make sure I had the correct versions of the hadoop aws jar per the version of spark hadoop that I was running, downloading the correct version of aws-java-sdk, and lastly downloading the dependency jets3t library
In the /opt/spark/jars
sudo wget https://repo1.maven.org/maven2/com/amazonaws/aws-java-sdk/1.11.30/aws-java-sdk-1.11.30.jar
sudo wget https://repo1.maven.org/maven2/org/apache/hadoop/hadoop-aws/2.7.3/hadoop-aws-2.7.3.jar
sudo wget https://repo1.maven.org/maven2/net/java/dev/jets3t/jets3t/0.9.4/jets3t-0.9.4.jar
Testing it out
scala> sc.hadoopConfiguration.set("fs.s3n.awsAccessKeyId", [ACCESS KEY ID])
scala> sc.hadoopConfiguration.set("fs.s3n.awsSecretAccessKey", [SECRET ACCESS KEY] )
scala> val myRDD = sc.textFile("s3n://adp-px/baby-names.csv")
scala> myRDD.count()
res2: Long = 49
Solution 2:[2]
If S3 access is by assume_role from local cluster then below worked for me.
import boto3
import pyspark as pyspark
from pyspark import SparkContext
session = boto3.session.Session(profile_name='profile_name')
sts_connection = session.client('sts')
response = sts_connection.assume_role(RoleArn='arn:aws:iam:::role/role_name', RoleSessionName='role_name',DurationSeconds=3600)
credentials = response['Credentials']
conf = pyspark.SparkConf()
conf.set('spark.jars.packages', 'org.apache.hadoop:hadoop-aws:3.2.0') //crosscheck the version.
sc = SparkContext(conf=conf)
sc._jsc.hadoopConfiguration().set('fs.s3a.aws.credentials.provider', 'org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider')
sc._jsc.hadoopConfiguration().set('fs.s3a.access.key', credentials['AccessKeyId'])
sc._jsc.hadoopConfiguration().set('fs.s3a.secret.key', credentials['SecretAccessKey'])
sc._jsc.hadoopConfiguration().set('fs.s3a.session.token', credentials['SessionToken'])
url = str('s3a://data.csv')
l1 = sc.textFile(url).collect()
for each in l1:
print(str(each))
break
keep below proper version of class files also in $SPARK_HOME/jars
- jets3t
- aws-java-sdk
- hadoop-aws
I prefer to delete unwanted jars from ~/.ivy2/jars
Solution 3:[3]
Each hadoop version should match aws-java-sdk-...jar, hadoop-aws-...jar.
And every aws-java-sdk version matched with hadoop-aws-..jar (it does not mean the same number).
For example ( aws-java-sdk-bundle-1.11.375.jar, hadoop-aws-3.2.0.jar are pair versions).
Lastly you should enroll the s3 domain in the hive.cnf configuration file.
Solution 4:[4]
From the official Hadoop troubleshooting documentation:
ClassNotFoundException: org.apache.hadoop.fs.s3a.S3AFileSystem
These are Hadoop filesystem client classes, found in the `hadoop-aws`
JAR. An exception reporting this class as missing means that this JAR
is not on the classpath.
To solve this problem first need to know what is org.apache.hadoop.fs.s3a:
In the Hadoop website, it explains in detail what Hadoop-AWS module: Integration with Amazon Web Services is. And the prerequisite to use it is having these two jars installed under /Spark/jars directory:
hadoop-awsJaraws-java-sdk-bundleJar
When downloading these jars, make sure two things:
Hadooopversion matches withhadoop-awsversion, ahadoop-aws-3.xx.jarworks for ahadoop-3.xxaws SDKforJavamatches theJavaversion installed. Check this official document fromAWSon exact version requirements.
For more troubleshooting, can always refer to the official Hadoop troubleshooting documentation:
Solution 5:[5]
Add the following to this file hadoop/etc/hadoop/core-site.xml
<property>
<name>fs.s3.awsAccessKeyId</name>
<value>***</value>
</property>
<property>
<name>fs.s3.awsSecretAccessKey</name>
<value>***</value>
</property>
Inside the Hadoop installation directory, find aws jars, for MAC installation directory is /usr/local/Cellar/hadoop/
find . -type f -name "*aws*"
sudo cp hadoop/share/hadoop/tools/lib/aws-java-sdk-1.7.4.jar hadoop/share/hadoop/common/lib/
sudo cp hadoop/share/hadoop/tools/lib/hadoop-aws-2.7.5.jar hadoop/share/hadoop/common/lib/
Solution 6:[6]
Following worked for me
My system config:
Ubuntu 16.04.6 LTS python3.7.7 openjdk version 1.8.0_252 spark-2.4.5-bin-hadoop2.7
Configure PYSPARK_PYTHON path: add following line in $spark_home/conf/spark-env.sh
export PYSPARK_PYTHON= python_env_path/bin/python
Start pyspark
pyspark --packages com.amazonaws:aws-java-sdk-pom:1.11.760,org.apache.hadoop:hadoop-aws:2.7.0 --conf spark.hadoop.fs.s3a.endpoint=s3.us-west-2.amazonaws.com
com.amazonaws:aws-java-sdk-pom:1.11.760 : depends on jdk version hadoop:hadoop-aws:2.7.0: depends on your hadoop version s3.us-west-2.amazonaws.com: depends on your s3 location
3.Read data from s3
df2=spark.read.parquet("s3a://s3location_file_path")
Solution 7:[7]
If nothing works in the above then do a cat and grep for the missing class. High possibility that the Jar is corrupted. For example, if you get class AmazonServiceException not found, then do a grep where the jar is already present as shown below.
grep "AmazonServiceException" *.jar
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | Vishrant |
| Solution 2 | sudo su developer |
| Solution 3 | Mamonu |
| Solution 4 | Gary Bao 鲿˜±å½¤ |
| Solution 5 | Vishrant |
| Solution 6 | Pranjal Gharat |
| Solution 7 | hellodk |


