'Should I consider whether an input value is even or odd when calculating time complexity?
I have the following function:
def pascal_triangle(i:int,j:int):
j = min(j, i-j + 1)
if i == 1 or j == 1:
return 1
elif j > i or j == 0 or i < 1 or j < 1:
return 0
else:
return pascal_triangle(i-1,j-1) + pascal_triangle(i-1,j)
The input value for j has the following constraint:
1<=j<=i/2
My computation for the time complexity is as follows:
f(i,j) = f(i-1,j-1) + f(i-1,j) = f(i-n,j-n) + ... + f(i-n,j)
So, to find the max n, we have:
i-n>=1
j-n>=1
i-n>=j
and, since we know that:
j>=1
j<=i/2
The max n is i/2-1, so the time complexity is O(2^(i/2-1)), and the space complexity is the maximum depth of recursion(n) times needed space for each time(O(1)), O(2^*(i/2-1)).
I hope my calculation is correct. Now my concern is that if i is odd, This number is not divisible by 2, but the terms of function must be an integer. Therefore, I want to know should I write the time complexity like this:
The time complexity and space complexity of the function are both:
O(2^(i/2-1)) if i is even O(2^(i/2-0.5)) if i is odd
Solution 1:[1]
At a first glance, the time and space analysis looks (roughly) correct. I haven't made a super close inspection, however, since it doesn't appear to be the focus of the question.
Regarding the time complexity for even / odd inputs, the answer is that the time complexity is O(sqrt(2)^i), regardless of whether i is even or odd.
In the even case, we have O(2^(i / 2 - 1)) ==> O(1/2 * sqrt(2)^i) ==> O(sqrt(2)^i).
In the odd case, we have O(2^(i / 2 - 0.5)) ==> O(sqrt(2) / 2 * sqrt(2)^i) ==> O(sqrt(2)^i).
What you've written is technically correct, but significantly more verbose than necessary. (At the very least, it's poor style, and if this question was on a homework assignment or an exam, I personally think one could justify a penalty on this basis.)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 |
