'Set k-largest elements of a tensor to zero in TensorFlow
I want to find k largest elements of each row of h and set zero value to those maximum elements.
I could be able to select the indexes of top most value of each row by using top_k function like:
top_k = tf.nn.top_k(h, 1)
But I could not use the indexes returned by top_k to update tensor.
How can I do that? Thanks in advance...
Solution 1:[1]
I was facing the opposite problem and wanted a operation which supported gradients. top_k does not support gradient propagation and hence a good way will be to implement the function in c++.
top_k c++ code is found here.
Your operation's kernel will look look like this:
template <typename T>
class MakeSparseOp : public OpKernel {
public:
explicit MakeSparseOp(OpKernelConstruction *context) : OpKernel(context) {}
void Compute(OpKernelContext *context) override {
// Grab the input tensors
const auto &k_in = context->input(1);
OP_REQUIRES(context, TensorShapeUtils::IsScalar(k_in.shape()),
errors::InvalidArgument("k must be scalar, got shape ",
k_in.shape().DebugString()));
int k = k_in.scalar<int32>()();
OP_REQUIRES(context, k >= 0,
errors::InvalidArgument("Need k >= 0, got ", k));
const Tensor &x_in = context->input(0);
OP_REQUIRES(context, x_in.dims() >= 1,
errors::InvalidArgument("input must be >= 1-D, got shape ",
x_in.shape().DebugString()));
OP_REQUIRES(
context, x_in.dim_size(x_in.dims() - 1) >= k,
errors::InvalidArgument("input must have at least k columns"));
// Flattening the input tensor
const auto &x = x_in.flat_inner_dims<T>();
const auto num_rows = x.dimension(0);
const auto num_cols = x.dimension(1);
TensorShape output_shape = x_in.shape();
// Create an output tensor
Tensor *x_out = nullptr;
OP_REQUIRES_OK(context,
context->allocate_output(0, output_shape, &x_out));
/*
* Get the top k values along the first dimension for input
*/
auto x_sparse = x_out->flat_inner_dims<T>();
if (k == 0) return; // Nothing to do
// Using TopN to get the k max element
gtl::TopN<std::pair<T, int32>> filter(k);
x_sparse = x; // Copy all elements
for (int r = 0; r < num_rows; r++) {
// Processing a row at a time
for (int32 c = 0; c < num_cols; c++) {
// The second element is the negated index, so that lower-index
// elements
// are considered larger than higher-index elements in case of
// ties.
filter.push(std::make_pair(x(r, c), -c));
}
for (auto top_k_it = filter.unsorted_begin();
top_k_it != filter.unsorted_end(); ++top_k_it) {
x_sparse(r, -top_k_it->second) = 0; // Set max k to zero
}
filter.Reset();
}
}
};
My implementation for a related problem is here.
Solution 2:[2]
With recent availability of scatter_nd_update function in tensorflow, here is a modified version of the answer from Oliver.
k = 2
val_to_replace_with = -333
x = tf.Variable([[6., 2., 0.], [0., 4., 5.]]) # of type tf.float32
values, indices = tf.nn.top_k(x, k, sorted=False) # indices will be [[0, 1], [1, 2]], values will be [[6., 2.], [4., 5.]]
# We need to create full indices like [[0, 0], [0, 1], [1, 2], [1, 1]]
my_range = tf.expand_dims(tf.range(0, tf.shape(indices)[0]), 1) # will be [[0], [1]]
my_range_repeated = tf.tile(my_range, [1, k]) # will be [[0, 0], [1, 1]]
# change shapes to [N, k, 1] and [N, k, 1], to concatenate into [N, k, 2]
full_indices = tf.concat([tf.expand_dims(my_range_repeated, -1), tf.expand_dims(indices, -1)], axis=2)
full_indices = tf.reshape(full_indices, [-1, 2])
# only significant modification -----------------------------------------------------------------
updates = val_to_replace_with + tf.zeros([tf.size(indices)], dtype=tf.float32)
c = tf.scatter_nd_update(x, full_indices, updates)
# only significant modification -----------------------------------------------------------------
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(c))
Solution 3:[3]
follow the Olivier Moindrot's idea, but implemented by tf's API.
x = tf.constant([[6., 2., 0.], [0., 4., 5.]]) # of type tf.float32
k = 2
values, indices = tf.nn.top_k(x, k, sorted=False) # indices will be [[0, 1], [1, 2]], values will be [[6., 2.], [4., 5.]]
# We need to create full indices like [[0, 0], [0, 1], [1, 2], [1, 1]]
ii, _ = tf.meshgrid(tf.range(2), tf.range(k), indexing='ij')
full_indices = tf.reshape(tf.stack([ii, indices], axis=-1), [-1, len(x.shape)])
tf.tensor_scatter_nd_sub(x, full_indices, tf.reshape(values, -1))
"""
In [249]: tf.tensor_scatter_nd_sub(x, full_indices, tf.reshape(values, -1))
Out[249]:
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)>
"""
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | ARB |
| Solution 2 | Batta |
| Solution 3 |
