'Python Polars regex - remove non english, keep numbers punctuations and emojis
I have python code for the task.
import re
import string
emoji_pat = '[\U0001F300-\U0001F64F\U0001F680-\U0001F6FF\u2600-\u26FF\u2700-\u27BF]'
shrink_whitespace_reg = re.compile(r'\s{2,}')
def clean_text(raw_text):
reg = re.compile(r'({})|[^a-zA-Z0-9 -{}]'.format(emoji_pat,r"\\".join(list(string.punctuation)))) # line a
result = reg.sub(lambda x: ' {} '.format(x.group(1)) if x.group(1) else ' ', raw_text)
return shrink_whitespace_reg.sub(' ', result).lower()
I tried to use the polars polars.internals.series.StringNameSpace.contains
But I got an exceptions
ComputeError: regex error: Syntax(
regex parse error:
([🌀-🙏🚀-☀-⛿✀-➿])|[^a-zA-Z0-9 -!\\"\\#\\$\\%\\&\\'\\(\\)\\*\\+\\,\\-\\.\\/\\:\\;\\<\\=\\>\\?\\@\\[\\\\\]\\^\\_\\`\\{\\}\\~]
^^
error: unclosed character class
Examples with chinese english and unknown
texts = ['水虫対策にはコレが一番ですね','🙏🚀','I love polars!-ã„ã¤ã‚‚ã•らã•ら.','So good 👍.']
df = pd.DataFrame({'text':texts})
d = df.text.apply(clean_text)
expected:
0
1 🙏 🚀
2 i love polars! .
3 so good 👍 .
Name: text, dtype: object
Another question:
Is it faster than use re?
Solution 1:[1]
import polars as pl
emoji_pat = "[\U0001F300-\U0001F64F\U0001F680-\U0001F6FF\u2600-\u26FF\u2700-\u27BF]"
texts = ['????????????????','??','I |love| polars!-ã„ã¤ã‚‚ã•らã•ら.','So good ? .']
df = pl.DataFrame(pl.Series("text", texts))
In [78]: df
Out[78]:
shape: (4, 1)
???????????????????????????????????????
? text ?
? --- ?
? str ?
???????????????????????????????????????
? ???????????????? ?
???????????????????????????????????????
? ?? ?
???????????????????????????????????????
? I |love| polars!-ã„ã¤ã‚‚ã•らã•... ?
???????????????????????????????????????
? So good ? . ?
???????????????????????????????????????
# Add cleaned column (rust regex requires "[" inside [] to be escaped).
df_cleaned = df.with_column(
pl.col("text").str.replace_all(
"[^a-zA-Z0-9 " + string.punctuation.replace("[", "\[") + emoji_pat + "]+",
""
).str.replace_all(
"\s{2,}", " "
).str.to_lowercase().alias("text_cleaned")
)
In[79]: df_cleaned
Out[79]:
shape: (4, 2)
????????????????????????????????????????????????????????????
? text ? text_cleaned ?
? --- ? --- ?
? str ? str ?
????????????????????????????????????????????????????????????
? ???????????????? ? ?
????????????????????????????????????????????????????????????
? ?? ? ?? ?
????????????????????????????????????????????????????????????
? I |love| polars!-ã„ã¤ã‚‚ã•らã•... ? i |love| polars!-. ?
????????????????????????????????????????????????????????????
? So [good] ? . ? so [good] ? . ?
????????????????????????????????????????????????????????????
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | ghuls |
