'pytest clear test memory after yield
I wrapped all of my pytests tests with the following fixture:
import pytest
import nvidia_smi
def gpu_memory_used():
nvidia_smi.nvmlInit()
device_count = nvidia_smi.nvmlDeviceGetCount()
assert device_count == 1, 'Should be 1 GPU'
handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)
info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
used_memory = info.used
nvidia_smi.nvmlShutdown()
return used_memory
@pytest.fixture(autouse=True)
def check_gpu_memory():
memory_used_before_test = gpu_memory_used()
yield
memory_used_after_test = gpu_memory_used()
assert memory_used_after_test == memory_used_before_test
Now I have the following dummy test function that runs small training:
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import shutil
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=-1)
def training(work_dir, epoch, network, optimizer, train_loader, log_interval, train_counter, train_losses):
network.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
train_losses.append(loss.item())
train_counter.append(
(batch_idx*64) + ((epoch-1)*len(train_loader.dataset)))
torch.save(network.state_dict(), f'{work_dir}/model.pth')
torch.save(optimizer.state_dict(), f'{work_dir}/optimizer.pth')
def validating(network, test_loader, test_losses):
network.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = network(data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def test_david_torch(tmp_path):
n_epochs = 3
batch_size_train = 128
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
momentum=momentum)
random_seed = 1
# torch.backends.cudnn.enabled = False
# torch.manual_seed(random_seed)
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(f'{str(tmp_path)}/files/', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(f'{str(tmp_path)}/files/', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_test, shuffle=True)
train_losses = []
train_counter = []
test_losses = []
test_counter = [i*len(train_loader.dataset) for i in range(n_epochs + 1)]
validating(network, test_loader, test_losses)
for epoch in range(1, n_epochs + 1):
training(str(tmp_path), epoch, network, optimizer, train_loader, log_interval, train_counter, train_losses)
validating(network, test_loader, test_losses)
shutil.rmtree(str(tmp_path))
Before the test is called I see in nvidia-smi that no memory is used, the problem is that after the yield memory is still being used.
Is there a way to avoid such behaviour? I tried clearing the cuda cache etc, but nothing really free the memory.
Before Test:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.82.01 Driver Version: 470.82.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 28C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
After Test (for my real case the memory usage is much larger):
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.82.01 Driver Version: 470.82.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 28C P8 9W / 70W | 3MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
