'mutate variable based on other columns with similar names
I have a df here (the desired output, my starting df does not have the Flag variable):
df <- data.frame(
Person = c('1','2','3'),
Date = as.Date(c('2010-09-30', '2012-11-20', '2015-03-11')),
Treatment_1 = as.Date(c('2010-09-30', '2012-11-21', '2015-03-22')),
Treatment_2 = as.Date(c('2011-09-30', 'NA', '2011-03-22')),
Treatment_3 = as.Date(c('2012-09-30', '2015-11-21', '2015-06-22')),
Surgery_1 = as.Date(c(NA, '2016-11-21', '2015-03-12')),
Surgery_2 = as.Date(c(NA, '2017-11-21', '2019-03-12')),
Surgery_3 = as.Date(c(NA, '2018-11-21', '2013-03-12')),
Flag = c('', 'Y', '')
)
and I want to derive the Flag variable based on these conditions:
- For any column that starts with Treatment, set Flag to "" if Date = Treatment
- For any column that starts with Surgery, set Flag to "" if Date = Surgery OR Date = Surgery +1 OR Date = Surgery - 1 (basically if the Surgery date is on the day, one day before, or one day after the Date variable, set Flag to "").
- else set Flag = "Y"
I've looked into mutate_at but that rewrites the variables and assigns values of True/False.
This is wrong but this is my attempt:
df2 <- df %>%
mutate(Flag = case_when(
vars(starts_with("Treatment"), Date == . ) ~ '',
vars(starts_with("Surgery"), Date == . | Date == . - 1 | Date == . + 1) ~ '',
TRUE ~ 'Y')
)
Solution 1:[1]
Here is an alternative using across approach:
library(tidyverse)
df %>%
mutate(across(starts_with("Treatment"), ~as.numeric(. %in% Date), .names ="new_{.col}"),
across(starts_with("Surgery"), ~as.numeric(. %in% c(Date, Date+1, Date-1)), .names ="new_{.col}")) %>%
mutate(Flag = ifelse(rowSums(select(., contains('new')))==1, "", "Y"), .keep="used") %>%
bind_cols(df)
Flag Person Date Treatment_1 Treatment_2 Treatment_3 Surgery_1 Surgery_2 Surgery_3
1 1 2010-09-30 2010-09-30 2011-09-30 2012-09-30 <NA> <NA> <NA>
2 Y 2 2012-11-20 2012-11-21 <NA> 2015-11-21 2016-11-21 2017-11-21 2018-11-21
3 3 2015-03-11 2015-03-22 2011-03-22 2015-06-22 2015-03-12 2019-03-12 2013-03-12
Solution 2:[2]
Updated to add data.table approach
If you want a data.table approach, here it is:
df[melt(df, id=c(1,2))[,flag:=fifelse(
(str_starts(variable,"T") & value==Date) |
(str_starts(variable,"S") & abs(value-Date)<=1),"", "Y")][
, .(flag=min(flag,na.rm=T)), Person], on=.(Person)]
Output
Person Date Treatment_1 Treatment_2 Treatment_3 Surgery_1 Surgery_2 Surgery_3 flag
1: 1 2010-09-30 2010-09-30 2011-09-30 2012-09-30 <NA> <NA> <NA>
2: 2 2012-11-20 2012-11-21 <NA> 2015-11-21 2016-11-21 2017-11-21 2018-11-21 Y
3: 3 2015-03-11 2015-03-22 2011-03-22 2015-06-22 2015-03-12 2019-03-12 2013-03-12
I like Andrew's approach, but I was working on this when his answer came in, so here it is in case you are interested
df %>% inner_join(
pivot_longer(df, cols=Treatment_1:Surgery_3) %>%
mutate(flag=case_when(
(str_starts(name,"T") & value==Date) | (str_starts(name,"S") & abs(value-Date)<=1) ~ "",
TRUE ~"Y")) %>%
group_by(Person) %>%
summarize(flag = min(flag))
)
Output:
Person Date Treatment_1 Treatment_2 Treatment_3 Surgery_1 Surgery_2 Surgery_3 flag
1 1 2010-09-30 2010-09-30 2011-09-30 2012-09-30 <NA> <NA> <NA>
2 2 2012-11-20 2012-11-21 <NA> 2015-11-21 2016-11-21 2017-11-21 2018-11-21 Y
3 3 2015-03-11 2015-03-22 2011-03-22 2015-06-22 2015-03-12 2019-03-12 2013-03-12
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | TarJae |
| Solution 2 |
